In [1]:
from statsmodels.stats.power import tt_ind_solve_power
In [5]:
normmean = 40
normstd = 17
admean = 55
adstd = 20
ef = abs(normmean-admean)/(adstd+normstd)
ratio = 1.0
alpha = 0.05
power = 0.9
n0 = tt_ind_solve_power(effect_size=ef, alpha = alpha, power = power, ratio = ratio)
print n0
In [6]:
import pandas as pd
In [21]:
data = pd.read_excel('/home/will/ClaudioStuff/TableData.xlsx', 'Sheet1')
In [26]:
data['HIV'] = data['HIVInfected'] == 'pos'
data['Aged'] = data['Age']>50
In [28]:
tab = pd.pivot_table(data,
cols = ['HIV', 'Impaired'],
rows = 'Aged',
values = 'ID',
aggfunc = 'count').fillna(0)
In [29]:
tab.to_excel('/home/will/ClaudioStuff/count_table.xlsx')
In [30]:
tab
Out[30]:
In [ ]: