In [1]:
from statsmodels.stats.power import tt_ind_solve_power

In [5]:
normmean = 40
normstd = 17
admean = 55
adstd = 20

ef = abs(normmean-admean)/(adstd+normstd)
ratio = 1.0
alpha = 0.05
power = 0.9

n0 = tt_ind_solve_power(effect_size=ef, alpha = alpha, power = power, ratio = ratio)
print n0


[ 10.]

In [6]:
import pandas as pd

In [21]:
data = pd.read_excel('/home/will/ClaudioStuff/TableData.xlsx', 'Sheet1')

In [26]:
data['HIV'] = data['HIVInfected'] == 'pos'
data['Aged'] = data['Age']>50

In [28]:
tab = pd.pivot_table(data,
                     cols = ['HIV', 'Impaired'],
                     rows = 'Aged',
                     values = 'ID',
                     aggfunc = 'count').fillna(0)

In [29]:
tab.to_excel('/home/will/ClaudioStuff/count_table.xlsx')

In [30]:
tab


Out[30]:
HIV False True
Impaired No Yes No Yes
Aged
False 2 1 2 23
True 8 4 0 2

In [ ]: