In [3]:
%load_ext autoreload
In [4]:
%autoreload 2
from geocode_mak import lat_lon_from_mak_names
import pandas as pd
In [5]:
mak_df = pd.read_csv("/Users/hep/Downloads/19_10_2017_organisations_to_geocode.csv",names=["institutes","n"])
In [9]:
lat_lon_match_score = lat_lon_from_mak_names(mak_df["institutes"],"~/Downloads/grid20170810/",perfect_only=True)
In [14]:
mak_df["longitude"] = [lon for lat,lon,match,score in lat_lon_match_score]
mak_df["latitude"] = [lat for lat,lon,match,score in lat_lon_match_score]
mak_df["match"] = [match for lat,lon,match,score in lat_lon_match_score]
mak_df["score"] = [score for lat,lon,match,score in lat_lon_match_score]
In [15]:
mak_df.to_csv("/Users/hep/Downloads/19_10_2017_organisations_geocoded_perfectOnly.csv")
In [17]:
mak_df.tail()
Out[17]:
In [19]:
null_long = pd.isnull(mak_df.longitude)
null_lat = pd.isnull(mak_df.latitude)
null_match = pd.isnull(mak_df.match)
print((~(null_long | null_lat)).sum())
print(((null_long | null_lat) & null_match).sum())
print(((null_long | null_lat) & ~null_match).sum())
In [20]:
mak_df.to_dict(orient="records")[0]
Out[20]:
In [ ]: