In [2]:
%matplotlib inline

import numpy as np
import matplotlib.pyplot as plt
import scipy
import scipy.spatial
from sklearn.cluster import KMeans

np.random.seed( 2507365 ) # We'll set the random number generator's seed so everyone generates the exact same dataset

In [84]:
sigma = 1.5
cluster_sigma = 0.15

num_clumps = 5
clump_N = 100

clump_centers = [ ( np.random.normal(loc=0.5,scale=sigma), np.random.normal(loc=0.5,scale=sigma) ) for _ in range(num_clumps) ]

points = []
points = []

for clump_center in clump_centers:
    for _ in range( clump_N ):
        points += [ ( np.random.normal(loc=clump_center[0],scale=cluster_sigma), np.random.normal(loc=clump_center[1],scale=cluster_sigma) ) ]


points_x = [ point[0] for point in points ]
points_y = [ point[1] for point in points ]

clump1_color = 0
clump2_color = 1
clump_area = 75
#colors = [ clump1_color for i in range(clump1_N) ] + [ clump2_color for i in range(clump2_N) ]
areas = [ clump_area for i in range( len(points_x) ) ]

plt.scatter( points_x, points_y, s=areas )

#plt.savefig('../images/example_unclustered.png')



In [6]:
sigma = 1
cluster_sigma = 0.15

num_clumps = 2
clump_N = 100

clump_centers = [ ( np.random.normal(loc=0.5,scale=sigma), np.random.normal(loc=0.5,scale=sigma) ) for _ in range(num_clumps) ]

points = []
points = []
labels = []


#for clump_center in clump_centers:
for clump_idx in range(len(clump_centers)):
    clump_center = clump_centers[clump_idx]
    for _ in range( clump_N ):
        points += [ ( 10* np.random.normal(loc=clump_center[0],scale=cluster_sigma), np.random.normal(loc=clump_center[1],scale=cluster_sigma) ) ]
        labels += [clump_idx]


points_x = [ point[0] for point in points ]
points_y = [ point[1] for point in points ]

clump1_color = 0
clump2_color = 1
clump_area = 75
#colors = [ clump1_color for i in range(clump1_N) ] + [ clump2_color for i in range(clump2_N) ]
areas = [ clump_area for i in range( len(points_x) ) ]

plt.scatter( points_x, points_y, s=areas )

#plt.axes().set_title( 'Scatter = ' + str(cluster_scatter(points,labels)))

#plt.savefig('../images/example_feature_scaling.svg')



In [ ]:
def cluster_scatter( points, labels ):
    unique_clusters = list(set(labels))
    scatter = 0
    for cluster in unique_clusters:
        cluster_points = [ points[idx] for idx in range(len(labels)) if labels[idx]==cluster ]

        centroid_x = float( sum( [point[0] for point in cluster_points] ) ) / len(cluster_points)
        centroid_y = float( sum( [point[1] for point in cluster_points] ) ) / len(cluster_points)        

        centroid_distances = [ ( point[0] - centroid_x )**2 + ( point[1] - centroid_y )**2 for point in cluster_points ]
        scatter += sum(centroid_distances)
    return scatter

In [72]:
sigma = 1.5
cluster_sigma = 0.5

num_clumps = 2
clump_N = 100

clump_centers = [ ( np.random.normal(loc=0.5,scale=sigma), np.random.normal(loc=0.5,scale=sigma) ) for _ in range(num_clumps) ]

points = []
points = []
labels = []


#for clump_center in clump_centers:
for clump_idx in range(len(clump_centers)):
    clump_center = clump_centers[clump_idx]
    for _ in range( clump_N ):
        points += [ ( np.random.normal(loc=clump_center[0],scale=cluster_sigma), np.random.normal(loc=clump_center[1],scale=cluster_sigma) ) ]
        labels += [clump_idx]


points_x = [ point[0] for point in points ]
points_y = [ point[1] for point in points ]

clump1_color = 0
clump2_color = 1
clump_area = 75
#colors = [ clump1_color for i in range(clump1_N) ] + [ clump2_color for i in range(clump2_N) ]
areas = [ clump_area for i in range( len(points_x) ) ]

plt.scatter( points_x, points_y, s=areas )

plt.axes().set_title( 'Scatter = ' + str(cluster_scatter(points,labels)))

#plt.savefig('../images/example_high_scatter.png')



In [12]:
def cluster_distance( points, labels ):
    unique_clusters = list(set(labels))

    mean_x = float( sum( [point[0] for point in points] ) ) / len(points)
    mean_y = float( sum( [point[1] for point in points] ) ) / len(points)    
    
    cluster_distance = 0
    
    for cluster in unique_clusters:
        cluster_points = [ points[idx] for idx in range(len(labels)) if labels[idx]==cluster ]

        centroid_x = float( sum( [point[0] for point in cluster_points] ) ) / len(cluster_points)
        centroid_y = float( sum( [point[1] for point in cluster_points] ) ) / len(cluster_points)        

        cluster_distance += len(cluster_points) * ( ( centroid_x - mean_x )**2 + ( centroid_y - mean_y )**2 )

    return cluster_distance

In [80]:
sigma = 0.5
cluster_sigma = 0.15

num_clumps = 2
clump_N = 100

clump_centers = [ ( np.random.normal(loc=0.5,scale=sigma), np.random.normal(loc=0.5,scale=sigma) ) for _ in range(num_clumps) ]

points = []
points = []
labels = []


#for clump_center in clump_centers:
for clump_idx in range(len(clump_centers)):
    clump_center = clump_centers[clump_idx]
    for _ in range( clump_N ):
        points += [ ( np.random.normal(loc=clump_center[0],scale=cluster_sigma), np.random.normal(loc=clump_center[1],scale=cluster_sigma) ) ]
        labels += [clump_idx]


points_x = [ point[0] for point in points ]
points_y = [ point[1] for point in points ]

clump1_color = 0
clump2_color = 1
clump_area = 75
#colors = [ clump1_color for i in range(clump1_N) ] + [ clump2_color for i in range(clump2_N) ]
areas = [ clump_area for i in range( len(points_x) ) ]

plt.scatter( points_x, points_y, s=areas )

plt.axes().set_title( 'Cluster distance = ' + str(cluster_distance(points,labels)))

#plt.savefig('../images/example_high_distance.png')



In [79]:
def cluster_summin_distance( points, labels ):
    unique_clusters = list(set(labels))

    clusters = {}

    # Make a dictionary storing all points with their cluster
    for cluster in unique_clusters:
        clusters[cluster] = [ points[idx] for idx in range(len(labels)) if labels[idx]==cluster ]

    cluster_spacing = 0
    for cluster_i in unique_clusters:
        for cluster_j in unique_clusters:
            if cluster_i != cluster_j: # Skip self-self
                distances = [ ]
                
                for point_i in clusters[cluster_i]:
                    for point_j in clusters[cluster_j]:
                        distances += [ ( point_i[0] - point_j[0] )**2 + ( point_i[1] - point_j[1] )**2 ]

                cluster_spacing += min( distances ) / ( len(unique_clusters)**2 )
                        
    return cluster_spacing

In [82]:
sigma = 2.5
cluster_sigma = 0.15

num_clumps = 2
clump_N = 100

clump_centers = [ ( np.random.normal(loc=0.5,scale=sigma), np.random.normal(loc=0.5,scale=sigma) ) for _ in range(num_clumps) ]

points = []
points = []
labels = []


#for clump_center in clump_centers:
for clump_idx in range(len(clump_centers)):
    clump_center = clump_centers[clump_idx]
    for _ in range( clump_N ):
        points += [ ( np.random.normal(loc=clump_center[0],scale=cluster_sigma), np.random.normal(loc=clump_center[1],scale=cluster_sigma) ) ]
        labels += [clump_idx]


points_x = [ point[0] for point in points ]
points_y = [ point[1] for point in points ]

clump1_color = 0
clump2_color = 1
clump_area = 75
#colors = [ clump1_color for i in range(clump1_N) ] + [ clump2_color for i in range(clump2_N) ]
areas = [ clump_area for i in range( len(points_x) ) ]

plt.scatter( points_x, points_y, s=areas )

plt.axes().set_title( 'Cluster spacing = ' + str(cluster_summin_distance(points,labels)))

#plt.savefig('../images/example_large_spacing.png')



In [65]:
k = 3

def run_with_k( k ):
    est = KMeans(n_clusters=k)

    plt.cla()
    est.fit( np.array(points) )
    labels = est.labels_

    color_map = [ np.random.rand(3) for _ in range( k ) ]
    colors = [ color_map[label] for label in labels ]

    #plt.scatter(points_x, points_y, c=colors)
    
    return cluster_scatter( points, labels )
    #return cluster_distance( points, labels )
    #return cluster_summin_distance( points, labels )

X = range( 2, 10 )
Y = []
for k in X:
    Y += [ run_with_k(k) ]

ax = plt.axes()

plt.plot( X, Y )

ax.set_xlabel('k')
ax.set_ylabel('Cluster scatter')

#plt.savefig('../images/kmeans_k_v_scatter.png')


Out[65]:
<matplotlib.text.Text at 0x10b725890>

In [36]:



Out[36]:
[0, 1, 2]

In [11]:
max_k = 7

plt.clf()

fignum = 0
for k in range( 2, max_k ):
    fig = plt.figure(fignum, figsize=(4, 3))
    plt.clf()
    ax = plt.axes()

    est = KMeans(n_clusters=k)
    
    plt.cla()
    est.fit( np.array(points) )
    labels = est.labels_

    color_map = [ np.random.rand(3) for _ in range( k ) ]
    colors = [ color_map[label] for label in labels ]
    
    ax.scatter(points_x, points_y, c=colors, s=areas)

    ax.set_title("K = " + str(k))
#    ax.xaxis.set_ticklabels([])
#    ax.yaxis.set_ticklabels([])
#    ax.set_xlabel('Petal width')
#    ax.set_ylabel('Sepal length')
    fignum = fignum + 1
    #plt.savefig('../images/kmeans_k=' + str(k) + '.png')



In [121]:
k = 4

num_steps = 10

plt.clf()

#centroids = [ ( np.random.normal(loc=0.5,scale=sigma), np.random.normal(loc=0.5,scale=sigma) ) for _ in range(k) ]

# Initialize centroids as random points from the dataset
centroids = [ points[i] for i in np.random.choice( len(points), k ) ]

#color_map = [ np.random.rand(3) for _ in range( k ) ]


fignum = 0
for step in range( num_steps ):
    plt.clf()
    ax = plt.axes()    
    
    plt.cla()

    labels = []
    for el in range(len(points_x)):
        labels += [ min( range(k), key=lambda cidx: ( (centroids[cidx][0] - points_x[el])**2 + (centroids[cidx][1] - points_y[el] )**2) ) ]

    colors = [ color_map[label] for label in labels ]
    
    # Draw points
    ax.scatter(points_x, points_y, c=colors, s=areas)

    # Draw centroids
    centroid_colors = [ color_map[i] for i in range(k) ]
    centroid_areas = [ 500 for _ in range(k) ]
    ax.scatter([p[0] for p in centroids], [p[1] for p in centroids], c=centroid_colors, s=centroid_areas)
    
    ax.set_title("K = " + str(k) + ', step=' + str(step))
    
    plt.savefig('../images/example_kmeans_step=' + str(step) + '.svg')

    # Update centroids
    for cidx in range(k):
        xs = [ points_x[i] for i in range(len(points_x)) if labels[i]==cidx ]
        ys = [ points_y[i] for i in range(len(points_y)) if labels[i]==cidx ]        
        if len(xs) > 0:
            centroids[cidx] = ( sum(xs)/float(len(xs)), sum(ys)/float(len(ys)) )



In [ ]:


In [17]:
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target
X


Out[17]:
array([[ 5.1,  3.5,  1.4,  0.2],
       [ 4.9,  3. ,  1.4,  0.2],
       [ 4.7,  3.2,  1.3,  0.2],
       [ 4.6,  3.1,  1.5,  0.2],
       [ 5. ,  3.6,  1.4,  0.2],
       [ 5.4,  3.9,  1.7,  0.4],
       [ 4.6,  3.4,  1.4,  0.3],
       [ 5. ,  3.4,  1.5,  0.2],
       [ 4.4,  2.9,  1.4,  0.2],
       [ 4.9,  3.1,  1.5,  0.1],
       [ 5.4,  3.7,  1.5,  0.2],
       [ 4.8,  3.4,  1.6,  0.2],
       [ 4.8,  3. ,  1.4,  0.1],
       [ 4.3,  3. ,  1.1,  0.1],
       [ 5.8,  4. ,  1.2,  0.2],
       [ 5.7,  4.4,  1.5,  0.4],
       [ 5.4,  3.9,  1.3,  0.4],
       [ 5.1,  3.5,  1.4,  0.3],
       [ 5.7,  3.8,  1.7,  0.3],
       [ 5.1,  3.8,  1.5,  0.3],
       [ 5.4,  3.4,  1.7,  0.2],
       [ 5.1,  3.7,  1.5,  0.4],
       [ 4.6,  3.6,  1. ,  0.2],
       [ 5.1,  3.3,  1.7,  0.5],
       [ 4.8,  3.4,  1.9,  0.2],
       [ 5. ,  3. ,  1.6,  0.2],
       [ 5. ,  3.4,  1.6,  0.4],
       [ 5.2,  3.5,  1.5,  0.2],
       [ 5.2,  3.4,  1.4,  0.2],
       [ 4.7,  3.2,  1.6,  0.2],
       [ 4.8,  3.1,  1.6,  0.2],
       [ 5.4,  3.4,  1.5,  0.4],
       [ 5.2,  4.1,  1.5,  0.1],
       [ 5.5,  4.2,  1.4,  0.2],
       [ 4.9,  3.1,  1.5,  0.1],
       [ 5. ,  3.2,  1.2,  0.2],
       [ 5.5,  3.5,  1.3,  0.2],
       [ 4.9,  3.1,  1.5,  0.1],
       [ 4.4,  3. ,  1.3,  0.2],
       [ 5.1,  3.4,  1.5,  0.2],
       [ 5. ,  3.5,  1.3,  0.3],
       [ 4.5,  2.3,  1.3,  0.3],
       [ 4.4,  3.2,  1.3,  0.2],
       [ 5. ,  3.5,  1.6,  0.6],
       [ 5.1,  3.8,  1.9,  0.4],
       [ 4.8,  3. ,  1.4,  0.3],
       [ 5.1,  3.8,  1.6,  0.2],
       [ 4.6,  3.2,  1.4,  0.2],
       [ 5.3,  3.7,  1.5,  0.2],
       [ 5. ,  3.3,  1.4,  0.2],
       [ 7. ,  3.2,  4.7,  1.4],
       [ 6.4,  3.2,  4.5,  1.5],
       [ 6.9,  3.1,  4.9,  1.5],
       [ 5.5,  2.3,  4. ,  1.3],
       [ 6.5,  2.8,  4.6,  1.5],
       [ 5.7,  2.8,  4.5,  1.3],
       [ 6.3,  3.3,  4.7,  1.6],
       [ 4.9,  2.4,  3.3,  1. ],
       [ 6.6,  2.9,  4.6,  1.3],
       [ 5.2,  2.7,  3.9,  1.4],
       [ 5. ,  2. ,  3.5,  1. ],
       [ 5.9,  3. ,  4.2,  1.5],
       [ 6. ,  2.2,  4. ,  1. ],
       [ 6.1,  2.9,  4.7,  1.4],
       [ 5.6,  2.9,  3.6,  1.3],
       [ 6.7,  3.1,  4.4,  1.4],
       [ 5.6,  3. ,  4.5,  1.5],
       [ 5.8,  2.7,  4.1,  1. ],
       [ 6.2,  2.2,  4.5,  1.5],
       [ 5.6,  2.5,  3.9,  1.1],
       [ 5.9,  3.2,  4.8,  1.8],
       [ 6.1,  2.8,  4. ,  1.3],
       [ 6.3,  2.5,  4.9,  1.5],
       [ 6.1,  2.8,  4.7,  1.2],
       [ 6.4,  2.9,  4.3,  1.3],
       [ 6.6,  3. ,  4.4,  1.4],
       [ 6.8,  2.8,  4.8,  1.4],
       [ 6.7,  3. ,  5. ,  1.7],
       [ 6. ,  2.9,  4.5,  1.5],
       [ 5.7,  2.6,  3.5,  1. ],
       [ 5.5,  2.4,  3.8,  1.1],
       [ 5.5,  2.4,  3.7,  1. ],
       [ 5.8,  2.7,  3.9,  1.2],
       [ 6. ,  2.7,  5.1,  1.6],
       [ 5.4,  3. ,  4.5,  1.5],
       [ 6. ,  3.4,  4.5,  1.6],
       [ 6.7,  3.1,  4.7,  1.5],
       [ 6.3,  2.3,  4.4,  1.3],
       [ 5.6,  3. ,  4.1,  1.3],
       [ 5.5,  2.5,  4. ,  1.3],
       [ 5.5,  2.6,  4.4,  1.2],
       [ 6.1,  3. ,  4.6,  1.4],
       [ 5.8,  2.6,  4. ,  1.2],
       [ 5. ,  2.3,  3.3,  1. ],
       [ 5.6,  2.7,  4.2,  1.3],
       [ 5.7,  3. ,  4.2,  1.2],
       [ 5.7,  2.9,  4.2,  1.3],
       [ 6.2,  2.9,  4.3,  1.3],
       [ 5.1,  2.5,  3. ,  1.1],
       [ 5.7,  2.8,  4.1,  1.3],
       [ 6.3,  3.3,  6. ,  2.5],
       [ 5.8,  2.7,  5.1,  1.9],
       [ 7.1,  3. ,  5.9,  2.1],
       [ 6.3,  2.9,  5.6,  1.8],
       [ 6.5,  3. ,  5.8,  2.2],
       [ 7.6,  3. ,  6.6,  2.1],
       [ 4.9,  2.5,  4.5,  1.7],
       [ 7.3,  2.9,  6.3,  1.8],
       [ 6.7,  2.5,  5.8,  1.8],
       [ 7.2,  3.6,  6.1,  2.5],
       [ 6.5,  3.2,  5.1,  2. ],
       [ 6.4,  2.7,  5.3,  1.9],
       [ 6.8,  3. ,  5.5,  2.1],
       [ 5.7,  2.5,  5. ,  2. ],
       [ 5.8,  2.8,  5.1,  2.4],
       [ 6.4,  3.2,  5.3,  2.3],
       [ 6.5,  3. ,  5.5,  1.8],
       [ 7.7,  3.8,  6.7,  2.2],
       [ 7.7,  2.6,  6.9,  2.3],
       [ 6. ,  2.2,  5. ,  1.5],
       [ 6.9,  3.2,  5.7,  2.3],
       [ 5.6,  2.8,  4.9,  2. ],
       [ 7.7,  2.8,  6.7,  2. ],
       [ 6.3,  2.7,  4.9,  1.8],
       [ 6.7,  3.3,  5.7,  2.1],
       [ 7.2,  3.2,  6. ,  1.8],
       [ 6.2,  2.8,  4.8,  1.8],
       [ 6.1,  3. ,  4.9,  1.8],
       [ 6.4,  2.8,  5.6,  2.1],
       [ 7.2,  3. ,  5.8,  1.6],
       [ 7.4,  2.8,  6.1,  1.9],
       [ 7.9,  3.8,  6.4,  2. ],
       [ 6.4,  2.8,  5.6,  2.2],
       [ 6.3,  2.8,  5.1,  1.5],
       [ 6.1,  2.6,  5.6,  1.4],
       [ 7.7,  3. ,  6.1,  2.3],
       [ 6.3,  3.4,  5.6,  2.4],
       [ 6.4,  3.1,  5.5,  1.8],
       [ 6. ,  3. ,  4.8,  1.8],
       [ 6.9,  3.1,  5.4,  2.1],
       [ 6.7,  3.1,  5.6,  2.4],
       [ 6.9,  3.1,  5.1,  2.3],
       [ 5.8,  2.7,  5.1,  1.9],
       [ 6.8,  3.2,  5.9,  2.3],
       [ 6.7,  3.3,  5.7,  2.5],
       [ 6.7,  3. ,  5.2,  2.3],
       [ 6.3,  2.5,  5. ,  1.9],
       [ 6.5,  3. ,  5.2,  2. ],
       [ 6.2,  3.4,  5.4,  2.3],
       [ 5.9,  3. ,  5.1,  1.8]])

In [18]:
np.array(points)


Out[18]:
array([[  1.93218767e+00,   7.91349228e-01],
       [  1.99088464e+00,   6.62294160e-01],
       [  1.77806580e+00,   6.78895335e-01],
       [  1.82383858e+00,   4.70783881e-01],
       [  2.06520952e+00,   8.11187979e-01],
       [  2.01959735e+00,   8.86689868e-01],
       [  2.25005558e+00,   1.03023621e+00],
       [  2.15483815e+00,   7.58466743e-01],
       [  1.81622240e+00,   7.67047008e-01],
       [  2.09157296e+00,   7.62246984e-01],
       [  1.86089627e+00,   4.65529507e-01],
       [  1.75245377e+00,   8.59309588e-01],
       [  2.00287027e+00,   6.70898034e-01],
       [  2.26778432e+00,   1.03746423e+00],
       [  1.90617537e+00,   3.61362055e-01],
       [  2.01715142e+00,   5.42212452e-01],
       [  1.81002092e+00,   5.44576129e-01],
       [  1.95308554e+00,   8.22389637e-01],
       [  1.91143890e+00,   6.52377559e-01],
       [  2.03762057e+00,   9.23894779e-01],
       [  1.82705147e+00,   3.68534687e-01],
       [  2.01513115e+00,   8.82471876e-01],
       [  2.11223333e+00,   6.60157016e-01],
       [  1.98408430e+00,   6.83631951e-01],
       [  2.13513751e+00,   4.87602191e-01],
       [  1.93956947e+00,   6.23761234e-01],
       [  2.00975822e+00,   6.96550244e-01],
       [  2.15308740e+00,   8.31729008e-01],
       [  1.92965073e+00,   6.72554626e-01],
       [  1.92114652e+00,   8.53914940e-01],
       [  1.86404999e+00,   5.51826645e-01],
       [  1.82318042e+00,   4.58804470e-01],
       [  1.91736723e+00,   7.61003172e-01],
       [  2.09495992e+00,   7.78603595e-01],
       [  2.04921091e+00,   6.27055064e-01],
       [  2.07717925e+00,   4.02049715e-01],
       [  2.08331709e+00,   7.13072465e-01],
       [  1.84600737e+00,   7.89331420e-01],
       [  2.03949128e+00,   7.33684274e-01],
       [  2.00905880e+00,   8.24096268e-01],
       [  2.07157832e+00,   7.44459951e-01],
       [  1.96099922e+00,   7.31269533e-01],
       [  2.02074801e+00,   6.55721817e-01],
       [  2.03749619e+00,   1.04414088e+00],
       [  2.10161028e+00,   7.36176333e-01],
       [  2.00069486e+00,   9.07100856e-01],
       [  2.02208908e+00,   6.79150272e-01],
       [  2.00342619e+00,   5.01751999e-01],
       [  1.96555996e+00,   7.38894526e-01],
       [  1.81697010e+00,   6.09178452e-01],
       [  2.08585709e+00,   8.01563206e-01],
       [  1.95833452e+00,   6.14366306e-01],
       [  1.84588139e+00,   8.54159259e-01],
       [  1.75819570e+00,   4.85640836e-01],
       [  1.73420741e+00,   9.94309567e-01],
       [  1.74493908e+00,   5.28398176e-01],
       [  2.12250455e+00,   7.99575036e-01],
       [  1.84453320e+00,   8.12643454e-01],
       [  1.84735152e+00,   5.90249162e-01],
       [  1.94651833e+00,   9.03709737e-01],
       [  2.06189493e+00,   4.94530910e-01],
       [  1.95788857e+00,   6.79111231e-01],
       [  2.29331880e+00,   6.68290818e-01],
       [  1.86311989e+00,   7.60411828e-01],
       [  1.99573693e+00,   6.28194592e-01],
       [  2.14339821e+00,   8.73189931e-01],
       [  1.87887708e+00,   6.67047320e-01],
       [  1.76961640e+00,   9.27733211e-01],
       [  1.93998522e+00,   6.68487617e-01],
       [  2.00642717e+00,   5.70185837e-01],
       [  1.99432889e+00,   1.02935522e+00],
       [  2.00488319e+00,   5.62010053e-01],
       [  1.94424081e+00,   9.41974804e-01],
       [  1.87548204e+00,   6.97857382e-01],
       [  2.17590404e+00,   8.20991030e-01],
       [  1.81625515e+00,   5.77336053e-01],
       [  1.77250184e+00,   5.54013711e-01],
       [  1.92389365e+00,   4.01972538e-01],
       [  1.66429547e+00,   8.27031231e-01],
       [  1.92657862e+00,   5.86589127e-01],
       [  1.90896893e+00,   9.14167842e-01],
       [  2.00948183e+00,   9.49078642e-01],
       [  2.03277606e+00,   9.30968080e-01],
       [  2.12814188e+00,   8.77150724e-01],
       [  1.88034007e+00,   6.52158636e-01],
       [  1.90473185e+00,   8.28243677e-01],
       [  1.96273476e+00,   7.28454408e-01],
       [  2.22179400e+00,   6.63428941e-01],
       [  1.77164552e+00,   6.35915401e-01],
       [  2.09357835e+00,   9.27450271e-01],
       [  2.04260366e+00,   7.46850207e-01],
       [  2.12557165e+00,   9.16987123e-01],
       [  2.14556642e+00,   4.41624696e-01],
       [  1.93260495e+00,   8.58095616e-01],
       [  2.07846493e+00,   6.87302755e-01],
       [  2.06820621e+00,   7.62680108e-01],
       [  2.12812786e+00,   5.79714066e-01],
       [  1.72015800e+00,   8.01566989e-01],
       [  1.72291961e+00,   5.79014825e-01],
       [  1.88470556e+00,   7.30148168e-01],
       [  2.80957463e-01,   8.87458587e-01],
       [  4.41773126e-01,   9.20828306e-01],
       [  2.23380964e-01,   9.29675955e-01],
       [  2.39289275e-01,   1.05705364e+00],
       [  2.13257456e-01,   1.08489786e+00],
       [  3.09869936e-01,   9.56324715e-01],
       [  2.01637286e-02,   1.03725174e+00],
       [  2.42786101e-01,   9.36271476e-01],
       [  1.64706982e-01,   1.22490800e+00],
       [  8.59793429e-02,   9.79638645e-01],
       [  6.74392378e-02,   8.55484340e-01],
       [ -1.48636574e-01,   1.04324959e+00],
       [  2.05631035e-01,   1.21051149e+00],
       [  2.55797575e-02,   1.02505086e+00],
       [  9.75004675e-02,   6.71627883e-01],
       [  1.04698107e-01,   1.12668860e+00],
       [  2.96155382e-01,   1.09267753e+00],
       [  3.21396501e-01,   9.31449825e-01],
       [ -8.97990289e-02,   8.21702020e-01],
       [  2.86021750e-01,   1.00045520e+00],
       [  2.59575577e-01,   1.24024383e+00],
       [  1.96185241e-01,   1.04284005e+00],
       [  1.13427724e-01,   1.09723574e+00],
       [  1.54941931e-01,   7.55014516e-01],
       [  2.53949716e-01,   9.84817448e-01],
       [ -2.35809581e-01,   8.55830891e-01],
       [  3.12151885e-01,   1.03264074e+00],
       [  2.52979503e-02,   9.46378793e-01],
       [  3.89009402e-02,   1.03865173e+00],
       [  3.73187613e-01,   1.29914482e+00],
       [  2.70973875e-01,   1.03623164e+00],
       [  3.23845473e-01,   5.57621391e-01],
       [  2.54049196e-01,   9.35961058e-01],
       [  3.84166697e-02,   9.27961741e-01],
       [ -1.67514457e-02,   1.13573450e+00],
       [ -1.26011851e-02,   1.11054194e+00],
       [ -8.60893576e-03,   1.16873038e+00],
       [  2.26516612e-01,   8.94683981e-01],
       [  8.05881452e-02,   8.50077292e-01],
       [ -8.97229216e-03,   1.20157182e+00],
       [  4.48434575e-02,   8.77640254e-01],
       [  1.45514282e-01,   8.92171146e-01],
       [  1.08999556e-01,   1.19031309e+00],
       [  3.38072428e-01,   1.14791933e+00],
       [  7.82520161e-02,   9.92283649e-01],
       [  8.88605217e-02,   1.28016550e+00],
       [  1.13193569e-01,   1.20754359e+00],
       [  5.52175751e-02,   8.36910730e-01],
       [  2.40835083e-01,   8.74562748e-01],
       [  2.92212463e-01,   1.10435069e+00],
       [  2.15626014e-01,   1.12912830e+00],
       [  2.50207000e-01,   8.32400621e-01],
       [  4.97521869e-02,   1.01713902e+00],
       [ -3.34954679e-02,   1.01106239e+00],
       [  1.10702568e-01,   1.39845555e+00],
       [  1.88599472e-01,   1.09180008e+00],
       [  1.88775950e-01,   1.16205451e+00],
       [  1.07686258e-01,   9.59183420e-01],
       [  2.05300584e-01,   1.26262518e+00],
       [  3.00797928e-01,   8.16657185e-01],
       [ -5.45269625e-02,   1.15502597e+00],
       [  1.57299054e-01,   1.00551022e+00],
       [  3.21295419e-01,   8.15025257e-01],
       [  1.96519468e-01,   1.20493201e+00],
       [ -6.49628746e-02,   1.20808262e+00],
       [ -5.24919173e-02,   9.82460172e-01],
       [  1.45319176e-01,   1.14614537e+00],
       [ -1.66232827e-01,   8.86582793e-01],
       [  4.38253047e-02,   1.17267055e+00],
       [  1.54076120e-01,   1.02392269e+00],
       [  4.04318408e-01,   8.63541341e-01],
       [  2.57052902e-01,   1.29882069e+00],
       [  1.50279823e-01,   1.26945172e+00],
       [  3.93042329e-01,   8.36914749e-01],
       [  2.62179292e-01,   1.02602356e+00],
       [  2.60767904e-01,   1.04340278e+00],
       [  2.86020157e-01,   9.06978831e-01],
       [  2.28002143e-01,   1.21029112e+00],
       [  2.23314971e-01,   1.14647363e+00],
       [ -9.79175744e-02,   1.22579131e+00],
       [ -1.03949701e-01,   1.14837283e+00],
       [  3.61408875e-02,   8.30267905e-01],
       [  7.16907503e-02,   1.26765983e+00],
       [  2.45596265e-01,   9.44775218e-01],
       [  2.58105105e-01,   1.01040303e+00],
       [  7.10880922e-02,   1.05800973e+00],
       [  1.47011215e-01,   1.03099971e+00],
       [  2.60719714e-01,   9.36821705e-01],
       [  9.33609981e-02,   9.85537418e-01],
       [  2.78977172e-01,   1.32989670e+00],
       [ -4.63465790e-02,   8.90650377e-01],
       [ -2.23324749e-02,   1.16195985e+00],
       [  1.98697478e-01,   9.80688662e-01],
       [  3.10294462e-01,   1.16962494e+00],
       [  2.48275500e-01,   1.17487366e+00],
       [ -5.25972314e-02,   1.07789111e+00],
       [  1.05079216e-01,   8.28985679e-01],
       [  1.58160462e-01,   1.31172605e+00],
       [ -2.45697360e-03,   8.99412715e-01],
       [ -4.25564215e-02,   9.33440114e-01],
       [ -6.33978248e-01,   7.50805296e-01],
       [ -4.39208333e-01,   3.72323108e-01],
       [ -2.47784472e-01,   1.65520840e-01],
       [ -4.40399094e-01,   5.98810838e-01],
       [ -4.97824260e-01,   8.11143021e-01],
       [ -4.78676150e-01,   5.54727738e-01],
       [ -6.33238617e-01,   6.64084938e-01],
       [ -6.51146128e-01,   5.85522713e-01],
       [ -7.31671661e-01,   2.73355023e-01],
       [ -1.89812826e-01,   3.49487454e-01],
       [ -6.39338744e-01,   6.06565206e-01],
       [ -2.42076631e-01,   6.66624756e-01],
       [ -5.53233631e-01,   3.94096104e-02],
       [ -3.74043495e-01,   5.63220711e-01],
       [ -5.05282764e-01,   5.13295129e-01],
       [ -3.25563288e-01,   3.70842740e-01],
       [ -5.60129585e-01,   3.89631576e-01],
       [ -7.50394487e-01,   5.64650425e-01],
       [ -5.81123670e-01,   1.91803283e-01],
       [ -6.27104642e-01,   4.29003075e-01],
       [ -3.93764694e-01,   5.88761107e-01],
       [ -4.62082914e-01,   4.94950366e-01],
       [ -2.67186381e-01,   5.61753750e-01],
       [ -6.23761031e-01,   4.78231101e-01],
       [ -4.47091323e-01,   5.36008024e-01],
       [ -5.36471878e-01,   1.07612256e-01],
       [ -1.75471165e-01,   2.30675081e-01],
       [ -3.67377721e-01,   5.65198609e-01],
       [ -3.51653447e-01,   4.76806826e-01],
       [ -6.92324622e-01,   2.29688575e-01],
       [ -4.21045118e-01,   5.18758423e-01],
       [ -4.58791885e-01,   2.57444033e-01],
       [ -5.59126305e-01,   4.04109475e-01],
       [ -4.43124088e-01,   5.00964459e-01],
       [ -5.18609298e-01,   1.80794353e-01],
       [ -5.72010232e-01,   2.28412102e-01],
       [ -2.67399706e-01,   3.62034550e-01],
       [ -5.86342121e-01,   5.80474959e-01],
       [ -9.41949132e-01,   4.31600960e-01],
       [ -6.39936736e-01,   4.25419144e-01],
       [ -7.13134389e-01,   5.69859439e-01],
       [ -5.54006881e-01,   2.15355772e-01],
       [ -3.06518292e-01,   5.22416917e-01],
       [ -5.74834468e-01,   6.59692069e-01],
       [ -5.85855250e-01,   6.16882484e-01],
       [ -3.67877685e-01,   6.13627445e-01],
       [ -4.49768127e-01,   4.80145727e-01],
       [ -4.19828512e-01,   3.06864954e-01],
       [ -4.88127597e-01,   5.82971641e-01],
       [ -9.45085940e-02,   5.82623904e-01],
       [ -3.62479663e-01,   9.22141995e-02],
       [ -3.05723399e-01,   4.27759397e-01],
       [ -5.63079607e-01,   4.80361170e-01],
       [ -6.15149337e-01,   2.33391598e-02],
       [ -3.01582753e-01,   4.64441298e-01],
       [ -5.28064831e-01,   5.13819377e-01],
       [ -3.06699976e-01,   5.21248441e-01],
       [ -5.89638400e-01,   7.06690891e-01],
       [ -4.13118683e-01,   4.85121228e-01],
       [ -5.92062229e-01,   2.78445394e-01],
       [ -2.59479366e-01,   5.15279425e-01],
       [ -3.63031715e-01,   2.72210641e-01],
       [ -4.36482487e-01,   3.65674486e-01],
       [ -7.54992005e-01,   6.61722665e-01],
       [ -7.08527597e-01,   6.14742090e-01],
       [ -7.07491981e-01,   2.15597850e-01],
       [ -4.74524554e-01,   5.14156308e-01],
       [ -4.53959450e-01,   4.76518665e-01],
       [ -6.04858179e-01,   6.71048362e-01],
       [ -6.41822658e-01,   2.54534020e-01],
       [ -7.10744109e-01,   5.79379016e-01],
       [ -3.77071054e-01,   4.43562383e-01],
       [ -5.45304194e-01,   2.71247458e-01],
       [ -4.24880170e-01,   6.00012970e-01],
       [ -6.26864159e-01,   4.46189354e-01],
       [ -4.56740189e-01,   4.96333739e-01],
       [ -5.71083104e-01,   5.62075176e-01],
       [ -4.92545431e-01,   5.22828499e-01],
       [ -5.35936576e-01,   4.11193099e-01],
       [ -3.65156966e-01,   3.44527567e-01],
       [ -5.75011671e-01,   6.14950326e-01],
       [ -4.39618364e-01,   4.33587404e-01],
       [ -4.76132632e-01,   4.68291326e-01],
       [ -2.76990111e-01,   3.57380340e-01],
       [ -3.85733024e-01,   2.60200719e-01],
       [ -5.68781524e-01,   4.01651614e-01],
       [ -7.75524414e-01,   2.72870288e-01],
       [ -5.02003058e-01,   3.63527903e-01],
       [ -1.73364774e-01,   4.28210124e-01],
       [ -4.49012839e-01,   5.14961577e-01],
       [ -7.54035736e-01,   4.45865601e-01],
       [ -5.20934923e-01,   5.57514518e-01],
       [ -4.56763397e-01,   5.98782697e-01],
       [ -5.99534500e-01,   6.14555243e-01],
       [ -5.83396366e-01,   3.00587878e-01],
       [ -6.03429142e-01,   4.49273942e-01],
       [ -3.98703283e-01,   5.09352398e-01],
       [ -7.50338214e-01,   4.15353911e-01],
       [ -4.97001162e-01,   1.98863890e-01],
       [ -6.96643728e-01,   5.24224580e-01],
       [  2.12493280e-01,   2.75083120e+00],
       [  6.14983284e-01,   2.78693164e+00],
       [  5.36467263e-01,   2.73835242e+00],
       [  4.43073611e-01,   2.88059981e+00],
       [  3.86395356e-01,   3.02228847e+00],
       [  3.90092659e-01,   2.76803501e+00],
       [  3.03422804e-01,   2.84198087e+00],
       [  6.74126410e-01,   2.78297095e+00],
       [  3.84973642e-01,   3.07354063e+00],
       [  5.82677513e-01,   2.58000277e+00],
       [  4.97266890e-01,   2.58189244e+00],
       [  6.53459755e-01,   2.56927281e+00],
       [  4.50784808e-01,   2.63944363e+00],
       [  6.84282928e-01,   2.92994520e+00],
       [  4.07477415e-01,   2.67080123e+00],
       [  7.03706253e-01,   2.93184258e+00],
       [  5.09365869e-01,   2.66003510e+00],
       [  6.26787754e-01,   2.89779111e+00],
       [  4.10411137e-01,   3.00864950e+00],
       [  4.47441446e-01,   2.57515133e+00],
       [  4.58091564e-01,   3.05101640e+00],
       [  4.78217443e-01,   2.96852923e+00],
       [  3.51291929e-01,   2.90223878e+00],
       [  5.06660912e-01,   2.79340277e+00],
       [  3.92723736e-01,   2.88456692e+00],
       [  6.63965402e-01,   2.85476669e+00],
       [  5.65928569e-01,   3.00124280e+00],
       [  7.54792100e-01,   2.85579482e+00],
       [  3.85102263e-01,   2.80267848e+00],
       [  4.40303216e-01,   2.76555376e+00],
       [  6.62583942e-01,   2.60414984e+00],
       [  5.18516489e-01,   2.79422964e+00],
       [  5.27196296e-01,   2.78115337e+00],
       [  3.88115082e-01,   3.07033770e+00],
       [  5.80731702e-01,   2.57721174e+00],
       [  3.86422835e-01,   2.83756712e+00],
       [  4.96900348e-01,   2.64538016e+00],
       [  4.92683866e-01,   2.92859722e+00],
       [  4.72826407e-01,   2.72031508e+00],
       [  5.02113608e-01,   2.79249813e+00],
       [  5.35694985e-01,   2.72089760e+00],
       [  6.25980490e-01,   2.90894848e+00],
       [  3.09919570e-01,   2.58262400e+00],
       [  3.48708855e-01,   2.81315229e+00],
       [  4.30100741e-01,   2.58808787e+00],
       [  3.54733670e-01,   2.64570517e+00],
       [  4.62125711e-01,   3.16716179e+00],
       [  5.22715426e-01,   2.98503848e+00],
       [  1.61214652e-01,   2.98782357e+00],
       [  4.72943272e-01,   2.55053275e+00],
       [  8.50136562e-01,   2.81925414e+00],
       [  4.69056466e-01,   2.91770742e+00],
       [  4.19399960e-01,   2.82971728e+00],
       [  7.73566392e-01,   3.04139446e+00],
       [  2.98045210e-01,   2.66095617e+00],
       [  3.83977004e-01,   2.82937330e+00],
       [  4.69916476e-01,   2.43639825e+00],
       [  5.61626646e-01,   2.58547065e+00],
       [  4.13815679e-01,   2.59005090e+00],
       [  6.70819298e-01,   2.71490458e+00],
       [  8.26243151e-01,   2.76810133e+00],
       [  3.51787379e-01,   2.52821127e+00],
       [  5.35532378e-01,   2.85975017e+00],
       [  3.39597125e-01,   2.67480015e+00],
       [  4.72447256e-01,   2.86013953e+00],
       [  5.64037533e-01,   2.99831818e+00],
       [  3.30938207e-01,   2.84284145e+00],
       [  7.06151285e-01,   2.85197992e+00],
       [  1.87394943e-01,   2.95571176e+00],
       [  2.66511397e-01,   2.64713820e+00],
       [  2.49793850e-01,   2.83454641e+00],
       [  3.40306316e-01,   2.93834570e+00],
       [  5.95297542e-01,   2.72714822e+00],
       [  4.62185627e-01,   2.84475668e+00],
       [  8.31966541e-01,   2.78020757e+00],
       [  5.09886726e-01,   3.02243620e+00],
       [  5.37307665e-01,   2.96612103e+00],
       [  5.36956603e-01,   2.97348544e+00],
       [  3.25051266e-01,   2.89165497e+00],
       [  4.74857954e-01,   2.85976184e+00],
       [  6.74917989e-01,   2.81218876e+00],
       [  5.79152137e-01,   2.78261091e+00],
       [  7.99206058e-01,   2.71032193e+00],
       [  2.68379562e-01,   2.87443668e+00],
       [  4.36457441e-01,   2.61427699e+00],
       [  5.84966004e-01,   2.65212095e+00],
       [  3.22289780e-01,   2.99756299e+00],
       [  6.47775546e-01,   2.69771921e+00],
       [  4.06605093e-01,   2.80332832e+00],
       [  3.59521113e-01,   2.80163538e+00],
       [  6.64075153e-01,   2.60882440e+00],
       [  3.66928230e-01,   2.57457916e+00],
       [  2.24909037e-01,   2.68017285e+00],
       [  3.89276676e-01,   2.81327228e+00],
       [  5.05118496e-01,   2.57633098e+00],
       [  4.21862199e-01,   2.74194179e+00],
       [  5.79220283e-01,   2.98241310e+00],
       [  4.22884204e-01,   2.79945123e+00],
       [  6.26102035e-01,   2.79686747e+00],
       [  1.72951068e-02,   2.83292234e+00],
       [  1.43872221e+00,   6.29332496e-01],
       [  1.50721149e+00,   6.61882310e-01],
       [  1.48078161e+00,   5.22521088e-01],
       [  1.27066787e+00,   3.85689738e-01],
       [  1.67913379e+00,   5.29602806e-01],
       [  1.51316958e+00,   6.26844780e-01],
       [  1.38850266e+00,   6.64811708e-01],
       [  1.74796147e+00,   6.82918062e-01],
       [  1.57706312e+00,   2.99232213e-01],
       [  1.31463526e+00,   4.65515974e-01],
       [  1.35048369e+00,   3.33014922e-01],
       [  1.72334236e+00,   8.76705254e-01],
       [  1.36822068e+00,   5.87740885e-01],
       [  1.48236372e+00,   4.59506084e-01],
       [  1.55077468e+00,   5.17676831e-01],
       [  1.59222975e+00,   7.07726137e-01],
       [  1.48971284e+00,   6.42754962e-01],
       [  1.45389003e+00,   3.84317808e-01],
       [  1.21389626e+00,   6.81176877e-01],
       [  1.47606694e+00,   6.91003497e-01],
       [  1.50381340e+00,   3.81195750e-01],
       [  1.63454613e+00,   4.24290730e-01],
       [  1.51639660e+00,   3.83045272e-01],
       [  1.58962706e+00,   6.10418697e-01],
       [  1.52490829e+00,   1.24443220e-01],
       [  1.39889593e+00,   4.21376285e-01],
       [  1.65646473e+00,   6.01147019e-01],
       [  1.53173531e+00,   5.25514486e-01],
       [  1.34066289e+00,   6.12541985e-01],
       [  1.32695441e+00,   4.86285344e-01],
       [  1.35680712e+00,   4.65064887e-01],
       [  1.41977189e+00,   6.44032277e-01],
       [  1.44540377e+00,   5.35858005e-01],
       [  1.66867820e+00,   9.25913468e-01],
       [  1.67949078e+00,   3.07588418e-01],
       [  1.36576898e+00,   5.91367897e-01],
       [  1.53264865e+00,   8.36402661e-01],
       [  1.29982542e+00,   3.88295082e-01],
       [  1.21689431e+00,   6.52230117e-01],
       [  1.51122243e+00,   7.57602665e-01],
       [  1.42559904e+00,   9.69431529e-02],
       [  1.40615911e+00,   4.94799226e-01],
       [  1.49697022e+00,   6.17675664e-01],
       [  1.49713164e+00,   7.69930590e-01],
       [  1.55323444e+00,   5.82765549e-01],
       [  1.28073406e+00,   4.83426276e-01],
       [  1.71708848e+00,   5.40888994e-01],
       [  1.33937427e+00,   7.31106217e-01],
       [  1.48497978e+00,   6.59123971e-01],
       [  1.38715411e+00,   7.94944941e-01],
       [  1.42077666e+00,   6.77829994e-01],
       [  1.47332070e+00,   6.57975151e-01],
       [  1.56769800e+00,   5.22765467e-01],
       [  1.41115358e+00,   7.63544471e-01],
       [  1.39891516e+00,   4.69046562e-01],
       [  1.72092760e+00,   3.60455368e-01],
       [  1.46089959e+00,   3.87750095e-01],
       [  1.34078802e+00,   6.04306413e-01],
       [  1.53673910e+00,   3.74516431e-01],
       [  1.47942118e+00,   5.08050959e-01],
       [  1.16848898e+00,   4.92719271e-01],
       [  1.40566649e+00,   6.58501379e-01],
       [  1.62717590e+00,   6.73523405e-01],
       [  1.42244865e+00,   5.02125292e-01],
       [  1.74270369e+00,   4.07008898e-01],
       [  1.34998348e+00,   4.74294904e-01],
       [  1.48309270e+00,   6.36602040e-01],
       [  1.45572700e+00,   4.99204364e-01],
       [  1.28159664e+00,   6.52634814e-01],
       [  1.59300473e+00,   5.17577880e-01],
       [  1.71982391e+00,   6.78217206e-01],
       [  1.32347278e+00,   6.14911251e-01],
       [  1.44790951e+00,   4.21607118e-01],
       [  1.35945375e+00,   7.63526601e-01],
       [  2.05484502e+00,   7.50570883e-01],
       [  1.45763776e+00,   4.05828033e-01],
       [  1.28797667e+00,   5.18270153e-01],
       [  1.31632462e+00,   4.99038663e-01],
       [  1.44224635e+00,   7.43485269e-01],
       [  1.62889446e+00,   6.42788432e-01],
       [  1.50040157e+00,   5.73146180e-01],
       [  1.39104273e+00,   5.18268870e-01],
       [  1.42248864e+00,   7.21562311e-01],
       [  1.36229474e+00,   6.53812365e-01],
       [  1.34716093e+00,   4.75184132e-01],
       [  1.56886464e+00,   6.07464689e-01],
       [  1.37351325e+00,   9.22798998e-01],
       [  1.51527931e+00,   6.24496427e-01],
       [  1.73406893e+00,   5.27116183e-01],
       [  1.49484621e+00,   4.01203141e-01],
       [  1.51951781e+00,   8.52856424e-01],
       [  1.24640055e+00,   5.55131369e-01],
       [  1.49715438e+00,   5.21103915e-01],
       [  1.39964100e+00,   6.99337966e-01],
       [  1.39495737e+00,   5.51746088e-01],
       [  1.35621434e+00,   3.46390965e-01],
       [  1.50874292e+00,   7.71332793e-01],
       [  1.56600153e+00,   3.48576028e-01],
       [  1.72592450e+00,   4.48087106e-01],
       [  1.49827454e+00,   7.98979063e-01]])

In [22]:
labels


Out[22]:
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

In [24]:
np.random.rand(3)


Out[24]:
array([ 0.66278854,  0.8080636 ,  0.46854239])

In [54]:
# Z-normalized Iris dataset

from sklearn import datasets
iris = datasets.load_iris()

X = iris.data
Y = iris.target

classes = [ 1 if el == 1 else 0 for el in Y ]

normX = (X - X.mean(axis=0)) / X.std(axis=0)
    
for line in normX:
    print line


[-0.90068117  1.03205722 -1.3412724  -1.31297673]
[-1.14301691 -0.1249576  -1.3412724  -1.31297673]
[-1.38535265  0.33784833 -1.39813811 -1.31297673]
[-1.50652052  0.10644536 -1.2844067  -1.31297673]
[-1.02184904  1.26346019 -1.3412724  -1.31297673]
[-0.53717756  1.95766909 -1.17067529 -1.05003079]
[-1.50652052  0.80065426 -1.3412724  -1.18150376]
[-1.02184904  0.80065426 -1.2844067  -1.31297673]
[-1.74885626 -0.35636057 -1.3412724  -1.31297673]
[-1.14301691  0.10644536 -1.2844067  -1.4444497 ]
[-0.53717756  1.49486315 -1.2844067  -1.31297673]
[-1.26418478  0.80065426 -1.227541   -1.31297673]
[-1.26418478 -0.1249576  -1.3412724  -1.4444497 ]
[-1.87002413 -0.1249576  -1.51186952 -1.4444497 ]
[-0.05250608  2.18907205 -1.45500381 -1.31297673]
[-0.17367395  3.11468391 -1.2844067  -1.05003079]
[-0.53717756  1.95766909 -1.39813811 -1.05003079]
[-0.90068117  1.03205722 -1.3412724  -1.18150376]
[-0.17367395  1.72626612 -1.17067529 -1.18150376]
[-0.90068117  1.72626612 -1.2844067  -1.18150376]
[-0.53717756  0.80065426 -1.17067529 -1.31297673]
[-0.90068117  1.49486315 -1.2844067  -1.05003079]
[-1.50652052  1.26346019 -1.56873522 -1.31297673]
[-0.90068117  0.56925129 -1.17067529 -0.91855782]
[-1.26418478  0.80065426 -1.05694388 -1.31297673]
[-1.02184904 -0.1249576  -1.227541   -1.31297673]
[-1.02184904  0.80065426 -1.227541   -1.05003079]
[-0.7795133   1.03205722 -1.2844067  -1.31297673]
[-0.7795133   0.80065426 -1.3412724  -1.31297673]
[-1.38535265  0.33784833 -1.227541   -1.31297673]
[-1.26418478  0.10644536 -1.227541   -1.31297673]
[-0.53717756  0.80065426 -1.2844067  -1.05003079]
[-0.7795133   2.42047502 -1.2844067  -1.4444497 ]
[-0.41600969  2.65187798 -1.3412724  -1.31297673]
[-1.14301691  0.10644536 -1.2844067  -1.4444497 ]
[-1.02184904  0.33784833 -1.45500381 -1.31297673]
[-0.41600969  1.03205722 -1.39813811 -1.31297673]
[-1.14301691  0.10644536 -1.2844067  -1.4444497 ]
[-1.74885626 -0.1249576  -1.39813811 -1.31297673]
[-0.90068117  0.80065426 -1.2844067  -1.31297673]
[-1.02184904  1.03205722 -1.39813811 -1.18150376]
[-1.62768839 -1.74477836 -1.39813811 -1.18150376]
[-1.74885626  0.33784833 -1.39813811 -1.31297673]
[-1.02184904  1.03205722 -1.227541   -0.78708485]
[-0.90068117  1.72626612 -1.05694388 -1.05003079]
[-1.26418478 -0.1249576  -1.3412724  -1.18150376]
[-0.90068117  1.72626612 -1.227541   -1.31297673]
[-1.50652052  0.33784833 -1.3412724  -1.31297673]
[-0.65834543  1.49486315 -1.2844067  -1.31297673]
[-1.02184904  0.56925129 -1.3412724  -1.31297673]
[ 1.40150837  0.33784833  0.53529583  0.26469891]
[ 0.67450115  0.33784833  0.42156442  0.39617188]
[ 1.2803405   0.10644536  0.64902723  0.39617188]
[-0.41600969 -1.74477836  0.1372359   0.13322594]
[ 0.79566902 -0.58776353  0.47843012  0.39617188]
[-0.17367395 -0.58776353  0.42156442  0.13322594]
[ 0.55333328  0.56925129  0.53529583  0.52764485]
[-1.14301691 -1.51337539 -0.26082403 -0.26119297]
[ 0.91683689 -0.35636057  0.47843012  0.13322594]
[-0.7795133  -0.8191665   0.08037019  0.26469891]
[-1.02184904 -2.43898725 -0.14709262 -0.26119297]
[ 0.06866179 -0.1249576   0.25096731  0.39617188]
[ 0.18982966 -1.97618132  0.1372359  -0.26119297]
[ 0.31099753 -0.35636057  0.53529583  0.26469891]
[-0.29484182 -0.35636057 -0.09022692  0.13322594]
[ 1.03800476  0.10644536  0.36469871  0.26469891]
[-0.29484182 -0.1249576   0.42156442  0.39617188]
[-0.05250608 -0.8191665   0.1941016  -0.26119297]
[ 0.4321654  -1.97618132  0.42156442  0.39617188]
[-0.29484182 -1.28197243  0.08037019 -0.12972   ]
[ 0.06866179  0.33784833  0.59216153  0.79059079]
[ 0.31099753 -0.58776353  0.1372359   0.13322594]
[ 0.55333328 -1.28197243  0.64902723  0.39617188]
[ 0.31099753 -0.58776353  0.53529583  0.00175297]
[ 0.67450115 -0.35636057  0.30783301  0.13322594]
[ 0.91683689 -0.1249576   0.36469871  0.26469891]
[ 1.15917263 -0.58776353  0.59216153  0.26469891]
[ 1.03800476 -0.1249576   0.70589294  0.65911782]
[ 0.18982966 -0.35636057  0.42156442  0.39617188]
[-0.17367395 -1.05056946 -0.14709262 -0.26119297]
[-0.41600969 -1.51337539  0.02350449 -0.12972   ]
[-0.41600969 -1.51337539 -0.03336121 -0.26119297]
[-0.05250608 -0.8191665   0.08037019  0.00175297]
[ 0.18982966 -0.8191665   0.76275864  0.52764485]
[-0.53717756 -0.1249576   0.42156442  0.39617188]
[ 0.18982966  0.80065426  0.42156442  0.52764485]
[ 1.03800476  0.10644536  0.53529583  0.39617188]
[ 0.55333328 -1.74477836  0.36469871  0.13322594]
[-0.29484182 -0.1249576   0.1941016   0.13322594]
[-0.41600969 -1.28197243  0.1372359   0.13322594]
[-0.41600969 -1.05056946  0.36469871  0.00175297]
[ 0.31099753 -0.1249576   0.47843012  0.26469891]
[-0.05250608 -1.05056946  0.1372359   0.00175297]
[-1.02184904 -1.74477836 -0.26082403 -0.26119297]
[-0.29484182 -0.8191665   0.25096731  0.13322594]
[-0.17367395 -0.1249576   0.25096731  0.00175297]
[-0.17367395 -0.35636057  0.25096731  0.13322594]
[ 0.4321654  -0.35636057  0.30783301  0.13322594]
[-0.90068117 -1.28197243 -0.43142114 -0.12972   ]
[-0.17367395 -0.58776353  0.1941016   0.13322594]
[ 0.55333328  0.56925129  1.27454998  1.71090158]
[-0.05250608 -0.8191665   0.76275864  0.92206376]
[ 1.52267624 -0.1249576   1.21768427  1.1850097 ]
[ 0.55333328 -0.35636057  1.04708716  0.79059079]
[ 0.79566902 -0.1249576   1.16081857  1.31648267]
[ 2.12851559 -0.1249576   1.6157442   1.1850097 ]
[-1.14301691 -1.28197243  0.42156442  0.65911782]
[ 1.76501198 -0.35636057  1.44514709  0.79059079]
[ 1.03800476 -1.28197243  1.16081857  0.79059079]
[ 1.64384411  1.26346019  1.33141568  1.71090158]
[ 0.79566902  0.33784833  0.76275864  1.05353673]
[ 0.67450115 -0.8191665   0.87649005  0.92206376]
[ 1.15917263 -0.1249576   0.99022146  1.1850097 ]
[-0.17367395 -1.28197243  0.70589294  1.05353673]
[-0.05250608 -0.58776353  0.76275864  1.57942861]
[ 0.67450115  0.33784833  0.87649005  1.44795564]
[ 0.79566902 -0.1249576   0.99022146  0.79059079]
[ 2.24968346  1.72626612  1.67260991  1.31648267]
[ 2.24968346 -1.05056946  1.78634131  1.44795564]
[ 0.18982966 -1.97618132  0.70589294  0.39617188]
[ 1.2803405   0.33784833  1.10395287  1.44795564]
[-0.29484182 -0.58776353  0.64902723  1.05353673]
[ 2.24968346 -0.58776353  1.67260991  1.05353673]
[ 0.55333328 -0.8191665   0.64902723  0.79059079]
[ 1.03800476  0.56925129  1.10395287  1.1850097 ]
[ 1.64384411  0.33784833  1.27454998  0.79059079]
[ 0.4321654  -0.58776353  0.59216153  0.79059079]
[ 0.31099753 -0.1249576   0.64902723  0.79059079]
[ 0.67450115 -0.58776353  1.04708716  1.1850097 ]
[ 1.64384411 -0.1249576   1.16081857  0.52764485]
[ 1.88617985 -0.58776353  1.33141568  0.92206376]
[ 2.4920192   1.72626612  1.50201279  1.05353673]
[ 0.67450115 -0.58776353  1.04708716  1.31648267]
[ 0.55333328 -0.58776353  0.76275864  0.39617188]
[ 0.31099753 -1.05056946  1.04708716  0.26469891]
[ 2.24968346 -0.1249576   1.33141568  1.44795564]
[ 0.55333328  0.80065426  1.04708716  1.57942861]
[ 0.67450115  0.10644536  0.99022146  0.79059079]
[ 0.18982966 -0.1249576   0.59216153  0.79059079]
[ 1.2803405   0.10644536  0.93335575  1.1850097 ]
[ 1.03800476  0.10644536  1.04708716  1.57942861]
[ 1.2803405   0.10644536  0.76275864  1.44795564]
[-0.05250608 -0.8191665   0.76275864  0.92206376]
[ 1.15917263  0.33784833  1.21768427  1.44795564]
[ 1.03800476  0.56925129  1.10395287  1.71090158]
[ 1.03800476 -0.1249576   0.81962435  1.44795564]
[ 0.55333328 -1.28197243  0.70589294  0.92206376]
[ 0.79566902 -0.1249576   0.81962435  1.05353673]
[ 0.4321654   0.80065426  0.93335575  1.44795564]
[ 0.06866179 -0.1249576   0.76275864  0.79059079]

In [ ]:


In [ ]:


In [ ]: