In [64]:
import numpy as np
import pandas as pd

In [65]:
#Importar fichero csv
# Descargar el fichero de Población, Total Mundial Mundial
#http://datos.bancomundial.org/indicador/SP.POP.TOTL
#API_SP.POP.TOTL_DS2_es_csv_v2.csv

In [66]:
fichero = 'API_SP.POP.TOTL_DS2_es_csv_v2.csv'

In [67]:
df = pd.read_csv(fichero,sep=',',header=1,skiprows=2) #Lee un fichero csv

In [68]:
df.info() # Expone información pertinente del DataFrame


<class 'pandas.core.frame.DataFrame'>
RangeIndex: 264 entries, 0 to 263
Data columns (total 62 columns):
Country Name      264 non-null object
Country Code      264 non-null object
Indicator Name    264 non-null object
Indicator Code    264 non-null object
1960              260 non-null float64
1961              260 non-null float64
1962              260 non-null float64
1963              260 non-null float64
1964              260 non-null float64
1965              260 non-null float64
1966              260 non-null float64
1967              260 non-null float64
1968              260 non-null float64
1969              260 non-null float64
1970              260 non-null float64
1971              260 non-null float64
1972              260 non-null float64
1973              260 non-null float64
1974              260 non-null float64
1975              260 non-null float64
1976              260 non-null float64
1977              260 non-null float64
1978              260 non-null float64
1979              260 non-null float64
1980              260 non-null float64
1981              260 non-null float64
1982              260 non-null float64
1983              260 non-null float64
1984              260 non-null float64
1985              260 non-null float64
1986              260 non-null float64
1987              260 non-null float64
1988              260 non-null float64
1989              260 non-null float64
1990              262 non-null float64
1991              262 non-null float64
1992              261 non-null float64
1993              261 non-null float64
1994              261 non-null float64
1995              262 non-null float64
1996              262 non-null float64
1997              262 non-null float64
1998              263 non-null float64
1999              263 non-null float64
2000              263 non-null float64
2001              263 non-null float64
2002              263 non-null float64
2003              263 non-null float64
2004              263 non-null float64
2005              263 non-null float64
2006              263 non-null float64
2007              263 non-null float64
2008              263 non-null float64
2009              263 non-null float64
2010              263 non-null float64
2011              263 non-null float64
2012              262 non-null float64
2013              262 non-null float64
2014              262 non-null float64
2015              262 non-null float64
2016              0 non-null float64
Unnamed: 61       0 non-null float64
dtypes: float64(58), object(4)
memory usage: 128.0+ KB

In [69]:
df.head() # mostrar cabecera con los primeros n filas, por defecto n es igual a 5


Out[69]:
Country Name Country Code Indicator Name Indicator Code 1960 1961 1962 1963 1964 1965 ... 2008 2009 2010 2011 2012 2013 2014 2015 2016 Unnamed: 61
0 Aruba ABW Población, total SP.POP.TOTL 54208.0 55435.0 56226.0 56697.0 57029.0 57360.0 ... 101342.0 101416.0 101597.0 101936.0 102393.0 102921.0 103441.0 103889.0 NaN NaN
1 Afganistán AFG Población, total SP.POP.TOTL 8994793.0 9164945.0 9343772.0 9531555.0 9728645.0 9935358.0 ... 26528741.0 27207291.0 27962207.0 28809167.0 29726803.0 30682500.0 31627506.0 32526562.0 NaN NaN
2 Angola AGO Población, total SP.POP.TOTL 5270844.0 5367287.0 5465905.0 5565808.0 5665701.0 5765025.0 ... 19842251.0 20520103.0 21219954.0 21942296.0 22685632.0 23448202.0 24227524.0 25021974.0 NaN NaN
3 Albania ALB Población, total SP.POP.TOTL 1608800.0 1659800.0 1711319.0 1762621.0 1814135.0 1864791.0 ... 2947314.0 2927519.0 2913021.0 2904780.0 2900247.0 2896652.0 2893654.0 2889167.0 NaN NaN
4 Andorra AND Población, total SP.POP.TOTL 13414.0 14376.0 15376.0 16410.0 17470.0 18551.0 ... 85616.0 85474.0 84419.0 82326.0 79316.0 75902.0 72786.0 70473.0 NaN NaN

5 rows × 62 columns


In [70]:
df.tail() # mostrar cabecera con las ultimas n filas, por defecto n es igual a 5


Out[70]:
Country Name Country Code Indicator Name Indicator Code 1960 1961 1962 1963 1964 1965 ... 2008 2009 2010 2011 2012 2013 2014 2015 2016 Unnamed: 61
259 Kosovo XKX Población, total SP.POP.TOTL 947000.0 966000.0 994000.0 1022000.0 1050000.0 1078000.0 ... 1747383.0 1761474.0 1775680.0 1790957.0 1805200.0 1818117.0 1812771.0 1797151.0 NaN NaN
260 Yemen, Rep. del YEM Población, total SP.POP.TOTL 5166311.0 5251663.0 5339285.0 5429501.0 5522690.0 5619170.0 ... 22322699.0 22954226.0 23591972.0 24234940.0 24882792.0 25533217.0 26183676.0 26832215.0 NaN NaN
261 Sudáfrica ZAF Población, total SP.POP.TOTL 17396000.0 17949962.0 18459442.0 18936138.0 19390554.0 19832000.0 ... 49296223.0 50020918.0 50771826.0 51549958.0 52356381.0 53192216.0 54058647.0 54956920.0 NaN NaN
262 Zambia ZMB Población, total SP.POP.TOTL 3049586.0 3142848.0 3240664.0 3342894.0 3449266.0 3559687.0 ... 13114579.0 13507849.0 13917439.0 14343526.0 14786581.0 15246086.0 15721343.0 16211767.0 NaN NaN
263 Zimbabwe ZWE Población, total SP.POP.TOTL 3752390.0 3876638.0 4006262.0 4140804.0 4279561.0 4422132.0 ... 13495462.0 13720997.0 13973897.0 14255592.0 14565482.0 14898092.0 15245855.0 15602751.0 NaN NaN

5 rows × 62 columns


In [71]:
df[['Country Name','2015']] # Población al 2015


Out[71]:
Country Name 2015
0 Aruba 1.038890e+05
1 Afganistán 3.252656e+07
2 Angola 2.502197e+07
3 Albania 2.889167e+06
4 Andorra 7.047300e+04
5 El mundo árabe 3.920223e+08
6 Emiratos Árabes Unidos 9.156963e+06
7 Argentina 4.341676e+07
8 Armenia 3.017712e+06
9 Samoa Americana 5.553800e+04
10 Antigua y Barbuda 9.181800e+04
11 Australia 2.378117e+07
12 Austria 8.611088e+06
13 Azerbaiyán 9.651349e+06
14 Burundi 1.117892e+07
15 Bélgica 1.128572e+07
16 Benin 1.087983e+07
17 Burkina Faso 1.810557e+07
18 Bangladesh 1.609956e+08
19 Bulgaria 7.177991e+06
20 Bahrein 1.377237e+06
21 Bahamas 3.880190e+05
22 Bosnia y Herzegovina 3.810416e+06
23 Belarús 9.513000e+06
24 Belice 3.592870e+05
25 Bermudas 6.523500e+04
26 Bolivia 1.072470e+07
27 Brasil 2.078475e+08
28 Barbados 2.842150e+05
29 Brunei Darussalam 4.231880e+05
... ... ...
234 América Latina y el Caribe (BIRF y la AIF) 6.168626e+08
235 Timor-Leste 1.245015e+06
236 Oriente Medio y Norte de África (BIRF y la AIF) 3.581388e+08
237 Tonga 1.061700e+05
238 Asia meridional (BIRF y la AIF) 1.744161e+09
239 África al sur del Sahara (BIRF y la AIF) 1.000981e+09
240 Trinidad y Tobago 1.360088e+06
241 Túnez 1.110780e+07
242 Turquía 7.866583e+07
243 Tuvalu 9.916000e+03
244 Tanzanía 5.347042e+07
245 Uganda 3.903238e+07
246 Ucrania 4.519820e+07
247 Ingreso mediano alto 2.593743e+09
248 Uruguay 3.431555e+06
249 Estados Unidos 3.214188e+08
250 Uzbekistán 3.129950e+07
251 San Vicente y las Granadinas 1.094620e+05
252 Venezuela 3.110808e+07
253 Islas Vírgenes Británicas 3.011700e+04
254 Islas Vírgenes (EE.UU.) 1.035740e+05
255 Viet Nam 9.170380e+07
256 Vanuatu 2.646520e+05
257 Mundo 7.346633e+09
258 Samoa 1.932280e+05
259 Kosovo 1.797151e+06
260 Yemen, Rep. del 2.683222e+07
261 Sudáfrica 5.495692e+07
262 Zambia 1.621177e+07
263 Zimbabwe 1.560275e+07

264 rows × 2 columns


In [72]:
df.iloc[:,0:5] # Mostrar los primero 5 campos del DataFrame


Out[72]:
Country Name Country Code Indicator Name Indicator Code 1960
0 Aruba ABW Población, total SP.POP.TOTL 5.420800e+04
1 Afganistán AFG Población, total SP.POP.TOTL 8.994793e+06
2 Angola AGO Población, total SP.POP.TOTL 5.270844e+06
3 Albania ALB Población, total SP.POP.TOTL 1.608800e+06
4 Andorra AND Población, total SP.POP.TOTL 1.341400e+04
5 El mundo árabe ARB Población, total SP.POP.TOTL 9.254053e+07
6 Emiratos Árabes Unidos ARE Población, total SP.POP.TOTL 9.261200e+04
7 Argentina ARG Población, total SP.POP.TOTL 2.061908e+07
8 Armenia ARM Población, total SP.POP.TOTL 1.867396e+06
9 Samoa Americana ASM Población, total SP.POP.TOTL 2.001200e+04
10 Antigua y Barbuda ATG Población, total SP.POP.TOTL 5.468100e+04
11 Australia AUS Población, total SP.POP.TOTL 1.027648e+07
12 Austria AUT Población, total SP.POP.TOTL 7.047539e+06
13 Azerbaiyán AZE Población, total SP.POP.TOTL 3.897889e+06
14 Burundi BDI Población, total SP.POP.TOTL 2.786740e+06
15 Bélgica BEL Población, total SP.POP.TOTL 9.153489e+06
16 Benin BEN Población, total SP.POP.TOTL 2.431620e+06
17 Burkina Faso BFA Población, total SP.POP.TOTL 4.829291e+06
18 Bangladesh BGD Población, total SP.POP.TOTL 4.820070e+07
19 Bulgaria BGR Población, total SP.POP.TOTL 7.867374e+06
20 Bahrein BHR Población, total SP.POP.TOTL 1.625010e+05
21 Bahamas BHS Población, total SP.POP.TOTL 1.095260e+05
22 Bosnia y Herzegovina BIH Población, total SP.POP.TOTL 3.214520e+06
23 Belarús BLR Población, total SP.POP.TOTL 8.198000e+06
24 Belice BLZ Población, total SP.POP.TOTL 9.206800e+04
25 Bermudas BMU Población, total SP.POP.TOTL 4.440000e+04
26 Bolivia BOL Población, total SP.POP.TOTL 3.693451e+06
27 Brasil BRA Población, total SP.POP.TOTL 7.249358e+07
28 Barbados BRB Población, total SP.POP.TOTL 2.309340e+05
29 Brunei Darussalam BRN Población, total SP.POP.TOTL 8.182500e+04
... ... ... ... ... ...
234 América Latina y el Caribe (BIRF y la AIF) TLA Población, total SP.POP.TOTL 2.104957e+08
235 Timor-Leste TLS Población, total SP.POP.TOTL 4.995250e+05
236 Oriente Medio y Norte de África (BIRF y la AIF) TMN Población, total SP.POP.TOTL 9.791405e+07
237 Tonga TON Población, total SP.POP.TOTL 6.160000e+04
238 Asia meridional (BIRF y la AIF) TSA Población, total SP.POP.TOTL 5.720361e+08
239 África al sur del Sahara (BIRF y la AIF) TSS Población, total SP.POP.TOTL 2.282688e+08
240 Trinidad y Tobago TTO Población, total SP.POP.TOTL 8.484810e+05
241 Túnez TUN Población, total SP.POP.TOTL 4.220701e+06
242 Turquía TUR Población, total SP.POP.TOTL 2.755328e+07
243 Tuvalu TUV Población, total SP.POP.TOTL 6.104000e+03
244 Tanzanía TZA Población, total SP.POP.TOTL 1.007449e+07
245 Uganda UGA Población, total SP.POP.TOTL 6.788211e+06
246 Ucrania UKR Población, total SP.POP.TOTL 4.266215e+07
247 Ingreso mediano alto UMC Población, total SP.POP.TOTL 1.175211e+09
248 Uruguay URY Población, total SP.POP.TOTL 2.538651e+06
249 Estados Unidos USA Población, total SP.POP.TOTL 1.806710e+08
250 Uzbekistán UZB Población, total SP.POP.TOTL 8.789492e+06
251 San Vicente y las Granadinas VCT Población, total SP.POP.TOTL 8.094800e+04
252 Venezuela VEN Población, total SP.POP.TOTL 8.146845e+06
253 Islas Vírgenes Británicas VGB Población, total SP.POP.TOTL 8.036000e+03
254 Islas Vírgenes (EE.UU.) VIR Población, total SP.POP.TOTL 3.200000e+04
255 Viet Nam VNM Población, total SP.POP.TOTL 3.474300e+07
256 Vanuatu VUT Población, total SP.POP.TOTL 6.370100e+04
257 Mundo WLD Población, total SP.POP.TOTL 3.035056e+09
258 Samoa WSM Población, total SP.POP.TOTL 1.086450e+05
259 Kosovo XKX Población, total SP.POP.TOTL 9.470000e+05
260 Yemen, Rep. del YEM Población, total SP.POP.TOTL 5.166311e+06
261 Sudáfrica ZAF Población, total SP.POP.TOTL 1.739600e+07
262 Zambia ZMB Población, total SP.POP.TOTL 3.049586e+06
263 Zimbabwe ZWE Población, total SP.POP.TOTL 3.752390e+06

264 rows × 5 columns


In [73]:
df[df['Country Name']=='República Dominicana'] #Visualizar una nación


Out[73]:
Country Name Country Code Indicator Name Indicator Code 1960 1961 1962 1963 1964 1965 ... 2008 2009 2010 2011 2012 2013 2014 2015 2016 Unnamed: 61
57 República Dominicana DOM Población, total SP.POP.TOTL 3294039.0 3406299.0 3521276.0 3638628.0 3757962.0 3878952.0 ... 9636491.0 9767737.0 9897983.0 10027140.0 10155036.0 10281408.0 10405943.0 10528391.0 NaN NaN

1 rows × 62 columns


In [74]:
# Cambiando indice en un dataframe
df.index = df['Country Code']
df.index.name = 'Codigo País'

In [75]:
df.info()


<class 'pandas.core.frame.DataFrame'>
Index: 264 entries, ABW to ZWE
Data columns (total 62 columns):
Country Name      264 non-null object
Country Code      264 non-null object
Indicator Name    264 non-null object
Indicator Code    264 non-null object
1960              260 non-null float64
1961              260 non-null float64
1962              260 non-null float64
1963              260 non-null float64
1964              260 non-null float64
1965              260 non-null float64
1966              260 non-null float64
1967              260 non-null float64
1968              260 non-null float64
1969              260 non-null float64
1970              260 non-null float64
1971              260 non-null float64
1972              260 non-null float64
1973              260 non-null float64
1974              260 non-null float64
1975              260 non-null float64
1976              260 non-null float64
1977              260 non-null float64
1978              260 non-null float64
1979              260 non-null float64
1980              260 non-null float64
1981              260 non-null float64
1982              260 non-null float64
1983              260 non-null float64
1984              260 non-null float64
1985              260 non-null float64
1986              260 non-null float64
1987              260 non-null float64
1988              260 non-null float64
1989              260 non-null float64
1990              262 non-null float64
1991              262 non-null float64
1992              261 non-null float64
1993              261 non-null float64
1994              261 non-null float64
1995              262 non-null float64
1996              262 non-null float64
1997              262 non-null float64
1998              263 non-null float64
1999              263 non-null float64
2000              263 non-null float64
2001              263 non-null float64
2002              263 non-null float64
2003              263 non-null float64
2004              263 non-null float64
2005              263 non-null float64
2006              263 non-null float64
2007              263 non-null float64
2008              263 non-null float64
2009              263 non-null float64
2010              263 non-null float64
2011              263 non-null float64
2012              262 non-null float64
2013              262 non-null float64
2014              262 non-null float64
2015              262 non-null float64
2016              0 non-null float64
Unnamed: 61       0 non-null float64
dtypes: float64(58), object(4)
memory usage: 129.9+ KB

In [76]:
df


Out[76]:
Country Name Country Code Indicator Name Indicator Code 1960 1961 1962 1963 1964 1965 ... 2008 2009 2010 2011 2012 2013 2014 2015 2016 Unnamed: 61
Codigo País
ABW Aruba ABW Población, total SP.POP.TOTL 5.420800e+04 5.543500e+04 5.622600e+04 5.669700e+04 5.702900e+04 5.736000e+04 ... 1.013420e+05 1.014160e+05 1.015970e+05 1.019360e+05 1.023930e+05 1.029210e+05 1.034410e+05 1.038890e+05 NaN NaN
AFG Afganistán AFG Población, total SP.POP.TOTL 8.994793e+06 9.164945e+06 9.343772e+06 9.531555e+06 9.728645e+06 9.935358e+06 ... 2.652874e+07 2.720729e+07 2.796221e+07 2.880917e+07 2.972680e+07 3.068250e+07 3.162751e+07 3.252656e+07 NaN NaN
AGO Angola AGO Población, total SP.POP.TOTL 5.270844e+06 5.367287e+06 5.465905e+06 5.565808e+06 5.665701e+06 5.765025e+06 ... 1.984225e+07 2.052010e+07 2.121995e+07 2.194230e+07 2.268563e+07 2.344820e+07 2.422752e+07 2.502197e+07 NaN NaN
ALB Albania ALB Población, total SP.POP.TOTL 1.608800e+06 1.659800e+06 1.711319e+06 1.762621e+06 1.814135e+06 1.864791e+06 ... 2.947314e+06 2.927519e+06 2.913021e+06 2.904780e+06 2.900247e+06 2.896652e+06 2.893654e+06 2.889167e+06 NaN NaN
AND Andorra AND Población, total SP.POP.TOTL 1.341400e+04 1.437600e+04 1.537600e+04 1.641000e+04 1.747000e+04 1.855100e+04 ... 8.561600e+04 8.547400e+04 8.441900e+04 8.232600e+04 7.931600e+04 7.590200e+04 7.278600e+04 7.047300e+04 NaN NaN
ARB El mundo árabe ARB Población, total SP.POP.TOTL 9.254053e+07 9.507799e+07 9.771119e+07 1.004394e+08 1.032637e+08 1.061841e+08 ... 3.368865e+08 3.450542e+08 3.531122e+08 3.610318e+08 3.688026e+08 3.765043e+08 3.842226e+08 3.920223e+08 NaN NaN
ARE Emiratos Árabes Unidos ARE Población, total SP.POP.TOTL 9.261200e+04 1.009850e+05 1.122400e+05 1.252160e+05 1.382200e+05 1.503180e+05 ... 6.900142e+06 7.705423e+06 8.329453e+06 8.734722e+06 8.952542e+06 9.039978e+06 9.086139e+06 9.156963e+06 NaN NaN
ARG Argentina ARG Población, total SP.POP.TOTL 2.061908e+07 2.095308e+07 2.128768e+07 2.162184e+07 2.195393e+07 2.228339e+07 ... 4.038186e+07 4.079864e+07 4.122288e+07 4.165562e+07 4.209522e+07 4.253830e+07 4.298003e+07 4.341676e+07 NaN NaN
ARM Armenia ARM Población, total SP.POP.TOTL 1.867396e+06 1.934239e+06 2.002170e+06 2.070427e+06 2.138133e+06 2.204650e+06 ... 2.975029e+06 2.966108e+06 2.963496e+06 2.967984e+06 2.978339e+06 2.992192e+06 3.006154e+06 3.017712e+06 NaN NaN
ASM Samoa Americana ASM Población, total SP.POP.TOTL 2.001200e+04 2.047800e+04 2.111800e+04 2.188300e+04 2.270100e+04 2.351800e+04 ... 5.703100e+04 5.622600e+04 5.563600e+04 5.531600e+04 5.522700e+04 5.530200e+04 5.543400e+04 5.553800e+04 NaN NaN
ATG Antigua y Barbuda ATG Población, total SP.POP.TOTL 5.468100e+04 5.540300e+04 5.631100e+04 5.736800e+04 5.850000e+04 5.965300e+04 ... 8.535000e+04 8.630000e+04 8.723300e+04 8.815200e+04 8.906900e+04 8.998500e+04 9.090000e+04 9.181800e+04 NaN NaN
AUS Australia AUS Población, total SP.POP.TOTL 1.027648e+07 1.048300e+07 1.074200e+07 1.095000e+07 1.116700e+07 1.138800e+07 ... 2.124920e+07 2.169170e+07 2.203175e+07 2.234002e+07 2.272825e+07 2.311735e+07 2.346409e+07 2.378117e+07 NaN NaN
AUT Austria AUT Población, total SP.POP.TOTL 7.047539e+06 7.086299e+06 7.129864e+06 7.175811e+06 7.223801e+06 7.270889e+06 ... 8.321496e+06 8.343323e+06 8.363404e+06 8.391643e+06 8.429991e+06 8.479375e+06 8.541575e+06 8.611088e+06 NaN NaN
AZE Azerbaiyán AZE Población, total SP.POP.TOTL 3.897889e+06 4.030130e+06 4.167558e+06 4.307315e+06 4.445653e+06 4.579759e+06 ... 8.763400e+06 8.947243e+06 9.054332e+06 9.173082e+06 9.295784e+06 9.416801e+06 9.535079e+06 9.651349e+06 NaN NaN
BDI Burundi BDI Población, total SP.POP.TOTL 2.786740e+06 2.840375e+06 2.894510e+06 2.950903e+06 3.011957e+06 3.079034e+06 ... 8.821795e+06 9.137786e+06 9.461117e+06 9.790151e+06 1.012457e+07 1.046596e+07 1.081686e+07 1.117892e+07 NaN NaN
BEL Bélgica BEL Población, total SP.POP.TOTL 9.153489e+06 9.183948e+06 9.220578e+06 9.289770e+06 9.378113e+06 9.463667e+06 ... 1.070997e+07 1.079649e+07 1.089559e+07 1.104774e+07 1.112825e+07 1.118282e+07 1.123121e+07 1.128572e+07 NaN NaN
BEN Benin BEN Población, total SP.POP.TOTL 2.431620e+06 2.466002e+06 2.503232e+06 2.543335e+06 2.586362e+06 2.632360e+06 ... 8.973525e+06 9.240982e+06 9.509798e+06 9.779391e+06 1.004979e+07 1.032223e+07 1.059848e+07 1.087983e+07 NaN NaN
BFA Burkina Faso BFA Población, total SP.POP.TOTL 4.829291e+06 4.894578e+06 4.960325e+06 5.027818e+06 5.098892e+06 5.174869e+06 ... 1.470901e+07 1.516586e+07 1.563207e+07 1.610685e+07 1.659081e+07 1.708455e+07 1.758920e+07 1.810557e+07 NaN NaN
BGD Bangladesh BGD Población, total SP.POP.TOTL 4.820070e+07 4.959361e+07 5.103060e+07 5.253260e+07 5.412939e+07 5.583502e+07 ... 1.482525e+08 1.499058e+08 1.516168e+08 1.534056e+08 1.552574e+08 1.571574e+08 1.590775e+08 1.609956e+08 NaN NaN
BGR Bulgaria BGR Población, total SP.POP.TOTL 7.867374e+06 7.943118e+06 8.012946e+06 8.078145e+06 8.144340e+06 8.204168e+06 ... 7.492561e+06 7.444443e+06 7.395599e+06 7.348328e+06 7.305888e+06 7.265115e+06 7.223938e+06 7.177991e+06 NaN NaN
BHR Bahrein BHR Población, total SP.POP.TOTL 1.625010e+05 1.679240e+05 1.731070e+05 1.780480e+05 1.827740e+05 1.873480e+05 ... 1.115777e+06 1.196774e+06 1.261319e+06 1.306014e+06 1.333577e+06 1.349427e+06 1.361930e+06 1.377237e+06 NaN NaN
BHS Bahamas BHS Población, total SP.POP.TOTL 1.095260e+05 1.151080e+05 1.210830e+05 1.273310e+05 1.336970e+05 1.400490e+05 ... 3.485870e+05 3.547800e+05 3.608300e+05 3.667110e+05 3.723880e+05 3.778410e+05 3.830540e+05 3.880190e+05 NaN NaN
BIH Bosnia y Herzegovina BIH Población, total SP.POP.TOTL 3.214520e+06 3.277096e+06 3.341809e+06 3.406466e+06 3.468083e+06 3.524596e+06 ... 3.839749e+06 3.837732e+06 3.835258e+06 3.832310e+06 3.828419e+06 3.823533e+06 3.817554e+06 3.810416e+06 NaN NaN
BLR Belarús BLR Población, total SP.POP.TOTL 8.198000e+06 8.271216e+06 8.351928e+06 8.437232e+06 8.524224e+06 8.610000e+06 ... 9.528000e+06 9.507000e+06 9.490000e+06 9.473000e+06 9.464000e+06 9.466000e+06 9.483000e+06 9.513000e+06 NaN NaN
BLZ Belice BLZ Población, total SP.POP.TOTL 9.206800e+04 9.470100e+04 9.738900e+04 1.001660e+05 1.030700e+05 1.061210e+05 ... 3.061650e+05 3.139250e+05 3.216090e+05 3.291930e+05 3.367070e+05 3.441930e+05 3.517060e+05 3.592870e+05 NaN NaN
BMU Bermudas BMU Población, total SP.POP.TOTL 4.440000e+04 4.550000e+04 4.660000e+04 4.770000e+04 4.890000e+04 5.010000e+04 ... 6.527300e+04 6.563600e+04 6.512400e+04 6.456400e+04 6.479800e+04 6.500100e+04 6.513900e+04 6.523500e+04 NaN NaN
BOL Bolivia BOL Población, total SP.POP.TOTL 3.693451e+06 3.764815e+06 3.838096e+06 3.913397e+06 3.990855e+06 4.070590e+06 ... 9.599916e+06 9.758799e+06 9.918245e+06 1.007824e+07 1.023876e+07 1.039993e+07 1.056189e+07 1.072470e+07 NaN NaN
BRA Brasil BRA Población, total SP.POP.TOTL 7.249358e+07 7.470689e+07 7.700755e+07 7.936845e+07 8.175180e+07 8.413006e+07 ... 1.947697e+08 1.967013e+08 1.986142e+08 2.005176e+08 2.024016e+08 2.042594e+08 2.060779e+08 2.078475e+08 NaN NaN
BRB Barbados BRB Población, total SP.POP.TOTL 2.309340e+05 2.316740e+05 2.325840e+05 2.335870e+05 2.345470e+05 2.353730e+05 ... 2.773150e+05 2.784660e+05 2.795660e+05 2.806020e+05 2.815800e+05 2.825030e+05 2.833800e+05 2.842150e+05 NaN NaN
BRN Brunei Darussalam BRN Población, total SP.POP.TOTL 8.182500e+04 8.568700e+04 8.960300e+04 9.365000e+04 9.793300e+04 1.025250e+05 ... 3.807860e+05 3.870800e+05 3.933020e+05 3.994430e+05 4.055120e+05 4.114990e+05 4.173940e+05 4.231880e+05 NaN NaN
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
TLA América Latina y el Caribe (BIRF y la AIF) TLA Población, total SP.POP.TOTL 2.104957e+08 2.164941e+08 2.226894e+08 2.290425e+08 2.354987e+08 2.420184e+08 ... 5.682523e+08 5.753981e+08 5.824841e+08 5.895062e+08 5.964635e+08 6.033477e+08 6.101499e+08 6.168626e+08 NaN NaN
TLS Timor-Leste TLS Población, total SP.POP.TOTL 4.995250e+05 5.083110e+05 5.174460e+05 5.269360e+05 5.367980e+05 5.470350e+05 ... 1.030630e+06 1.048367e+06 1.066409e+06 1.120392e+06 1.148958e+06 1.180069e+06 1.212107e+06 1.245015e+06 NaN NaN
TMN Oriente Medio y Norte de África (BIRF y la AIF) TMN Población, total SP.POP.TOTL 9.791405e+07 1.005201e+08 1.032034e+08 1.059679e+08 1.088222e+08 1.117711e+08 ... 3.166325e+08 3.223389e+08 3.281177e+08 3.339812e+08 3.398933e+08 3.458872e+08 3.519682e+08 3.581388e+08 NaN NaN
TON Tonga TON Población, total SP.POP.TOTL 6.160000e+04 6.374000e+04 6.625500e+04 6.900000e+04 7.175700e+04 7.436300e+04 ... 1.028160e+05 1.034160e+05 1.039470e+05 1.043920e+05 1.047690e+05 1.051390e+05 1.055860e+05 1.061700e+05 NaN NaN
TSA Asia meridional (BIRF y la AIF) TSA Población, total SP.POP.TOTL 5.720361e+08 5.841432e+08 5.967011e+08 6.095715e+08 6.230731e+08 6.369638e+08 ... 1.582147e+09 1.605444e+09 1.628689e+09 1.651889e+09 1.675019e+09 1.698093e+09 1.721153e+09 1.744161e+09 NaN NaN
TSS África al sur del Sahara (BIRF y la AIF) TSS Población, total SP.POP.TOTL 2.282688e+08 2.337600e+08 2.394036e+08 2.452170e+08 2.512159e+08 2.574149e+08 ... 8.272397e+08 8.501903e+08 8.737802e+08 8.979985e+08 9.228551e+08 9.483224e+08 9.743719e+08 1.000981e+09 NaN NaN
TTO Trinidad y Tobago TTO Población, total SP.POP.TOTL 8.484810e+05 8.653560e+05 8.800190e+05 8.925710e+05 9.032720e+05 9.124190e+05 ... 1.315372e+06 1.321624e+06 1.328095e+06 1.334790e+06 1.341579e+06 1.348240e+06 1.354483e+06 1.360088e+06 NaN NaN
TUN Túnez TUN Población, total SP.POP.TOTL 4.220701e+06 4.277371e+06 4.350811e+06 4.436643e+06 4.530835e+06 4.630000e+06 ... 1.032890e+07 1.043960e+07 1.054710e+07 1.067380e+07 1.077750e+07 1.088650e+07 1.099660e+07 1.110780e+07 NaN NaN
TUR Turquía TUR Población, total SP.POP.TOTL 2.755328e+07 2.822929e+07 2.890998e+07 2.959705e+07 3.029297e+07 3.100017e+07 ... 7.034436e+07 7.126131e+07 7.231042e+07 7.351700e+07 7.484919e+07 7.622364e+07 7.752379e+07 7.866583e+07 NaN NaN
TUV Tuvalu TUV Población, total SP.POP.TOTL 6.104000e+03 6.242000e+03 6.391000e+03 6.542000e+03 6.687000e+03 6.819000e+03 ... 9.788000e+03 9.808000e+03 9.827000e+03 9.844000e+03 9.860000e+03 9.876000e+03 9.893000e+03 9.916000e+03 NaN NaN
TZA Tanzanía TZA Población, total SP.POP.TOTL 1.007449e+07 1.037338e+07 1.068389e+07 1.100588e+07 1.133908e+07 1.168351e+07 ... 4.284474e+07 4.422211e+07 4.564852e+07 4.712300e+07 4.864571e+07 5.021346e+07 5.182262e+07 5.347042e+07 NaN NaN
UGA Uganda UGA Población, total SP.POP.TOTL 6.788211e+06 7.006629e+06 7.240155e+06 7.487411e+06 7.746181e+06 8.014376e+06 ... 3.101443e+07 3.206712e+07 3.314942e+07 3.426034e+07 3.540062e+07 3.657339e+07 3.778297e+07 3.903238e+07 NaN NaN
UKR Ucrania UKR Población, total SP.POP.TOTL 4.266215e+07 4.320364e+07 4.374947e+07 4.428590e+07 4.479432e+07 4.526194e+07 ... 4.625820e+07 4.605330e+07 4.587070e+07 4.570610e+07 4.559330e+07 4.548960e+07 4.536290e+07 4.519820e+07 NaN NaN
UMC Ingreso mediano alto UMC Población, total SP.POP.TOTL 1.175211e+09 1.180098e+09 1.197381e+09 1.225994e+09 1.254220e+09 1.283353e+09 ... 2.455687e+09 2.474451e+09 2.493277e+09 2.512627e+09 2.532681e+09 2.553112e+09 2.573612e+09 2.593743e+09 NaN NaN
URY Uruguay URY Población, total SP.POP.TOTL 2.538651e+06 2.571691e+06 2.603887e+06 2.635128e+06 2.665387e+06 2.694535e+06 ... 3.350832e+06 3.362761e+06 3.374414e+06 3.385610e+06 3.396753e+06 3.407969e+06 3.419516e+06 3.431555e+06 NaN NaN
USA Estados Unidos USA Población, total SP.POP.TOTL 1.806710e+08 1.836910e+08 1.865380e+08 1.892420e+08 1.918890e+08 1.943030e+08 ... 3.040940e+08 3.067715e+08 3.093469e+08 3.117189e+08 3.141026e+08 3.164274e+08 3.189074e+08 3.214188e+08 NaN NaN
UZB Uzbekistán UZB Población, total SP.POP.TOTL 8.789492e+06 9.044671e+06 9.319510e+06 9.611601e+06 9.917202e+06 1.023350e+07 ... 2.730280e+07 2.776740e+07 2.856240e+07 2.933940e+07 2.977450e+07 3.024320e+07 3.075770e+07 3.129950e+07 NaN NaN
VCT San Vicente y las Granadinas VCT Población, total SP.POP.TOTL 8.094800e+04 8.214400e+04 8.320600e+04 8.416700e+04 8.507600e+04 8.597200e+04 ... 1.091650e+05 1.092550e+05 1.093160e+05 1.093410e+05 1.093340e+05 1.093270e+05 1.093600e+05 1.094620e+05 NaN NaN
VEN Venezuela VEN Población, total SP.POP.TOTL 8.146845e+06 8.461684e+06 8.790590e+06 9.130346e+06 9.476255e+06 9.824694e+06 ... 2.811672e+07 2.855861e+07 2.899574e+07 2.942763e+07 2.985424e+07 3.027604e+07 3.069383e+07 3.110808e+07 NaN NaN
VGB Islas Vírgenes Británicas VGB Población, total SP.POP.TOTL 8.036000e+03 8.157000e+03 8.298000e+03 8.455000e+03 8.628000e+03 8.813000e+03 ... 2.560400e+04 2.645000e+04 2.722300e+04 2.790600e+04 2.851100e+04 2.905800e+04 2.958500e+04 3.011700e+04 NaN NaN
VIR Islas Vírgenes (EE.UU.) VIR Población, total SP.POP.TOTL 3.200000e+04 3.410000e+04 3.630000e+04 3.870000e+04 4.130000e+04 4.400000e+04 ... 1.070910e+05 1.067070e+05 1.062670e+05 1.057840e+05 1.052750e+05 1.047370e+05 1.041700e+05 1.035740e+05 NaN NaN
VNM Viet Nam VNM Población, total SP.POP.TOTL 3.474300e+07 3.542800e+07 3.612300e+07 3.683600e+07 3.757400e+07 3.834100e+07 ... 8.511870e+07 8.602500e+07 8.693250e+07 8.786030e+07 8.880920e+07 8.975950e+07 9.072890e+07 9.170380e+07 NaN NaN
VUT Vanuatu VUT Población, total SP.POP.TOTL 6.370100e+04 6.570800e+04 6.780600e+04 6.996200e+04 7.213100e+04 7.428700e+04 ... 2.253350e+05 2.307820e+05 2.362990e+05 2.418760e+05 2.474980e+05 2.531650e+05 2.588830e+05 2.646520e+05 NaN NaN
WLD Mundo WLD Población, total SP.POP.TOTL 3.035056e+09 3.076121e+09 3.129064e+09 3.193947e+09 3.259355e+09 3.326054e+09 ... 6.758303e+09 6.840956e+09 6.923684e+09 7.006908e+09 7.089452e+09 7.176092e+09 7.260780e+09 7.346633e+09 NaN NaN
WSM Samoa WSM Población, total SP.POP.TOTL 1.086450e+05 1.121210e+05 1.157860e+05 1.195640e+05 1.233540e+05 1.270680e+05 ... 1.834400e+05 1.847000e+05 1.860290e+05 1.874340e+05 1.889010e+05 1.903900e+05 1.918450e+05 1.932280e+05 NaN NaN
XKX Kosovo XKX Población, total SP.POP.TOTL 9.470000e+05 9.660000e+05 9.940000e+05 1.022000e+06 1.050000e+06 1.078000e+06 ... 1.747383e+06 1.761474e+06 1.775680e+06 1.790957e+06 1.805200e+06 1.818117e+06 1.812771e+06 1.797151e+06 NaN NaN
YEM Yemen, Rep. del YEM Población, total SP.POP.TOTL 5.166311e+06 5.251663e+06 5.339285e+06 5.429501e+06 5.522690e+06 5.619170e+06 ... 2.232270e+07 2.295423e+07 2.359197e+07 2.423494e+07 2.488279e+07 2.553322e+07 2.618368e+07 2.683222e+07 NaN NaN
ZAF Sudáfrica ZAF Población, total SP.POP.TOTL 1.739600e+07 1.794996e+07 1.845944e+07 1.893614e+07 1.939055e+07 1.983200e+07 ... 4.929622e+07 5.002092e+07 5.077183e+07 5.154996e+07 5.235638e+07 5.319222e+07 5.405865e+07 5.495692e+07 NaN NaN
ZMB Zambia ZMB Población, total SP.POP.TOTL 3.049586e+06 3.142848e+06 3.240664e+06 3.342894e+06 3.449266e+06 3.559687e+06 ... 1.311458e+07 1.350785e+07 1.391744e+07 1.434353e+07 1.478658e+07 1.524609e+07 1.572134e+07 1.621177e+07 NaN NaN
ZWE Zimbabwe ZWE Población, total SP.POP.TOTL 3.752390e+06 3.876638e+06 4.006262e+06 4.140804e+06 4.279561e+06 4.422132e+06 ... 1.349546e+07 1.372100e+07 1.397390e+07 1.425559e+07 1.456548e+07 1.489809e+07 1.524586e+07 1.560275e+07 NaN NaN

264 rows × 62 columns


In [77]:
dfiltrado = df[df['2015']>9000000]

In [78]:
dfiltrado.info()


<class 'pandas.core.frame.DataFrame'>
Index: 136 entries, AFG to ZWE
Data columns (total 62 columns):
Country Name      136 non-null object
Country Code      136 non-null object
Indicator Name    136 non-null object
Indicator Code    136 non-null object
1960              136 non-null float64
1961              136 non-null float64
1962              136 non-null float64
1963              136 non-null float64
1964              136 non-null float64
1965              136 non-null float64
1966              136 non-null float64
1967              136 non-null float64
1968              136 non-null float64
1969              136 non-null float64
1970              136 non-null float64
1971              136 non-null float64
1972              136 non-null float64
1973              136 non-null float64
1974              136 non-null float64
1975              136 non-null float64
1976              136 non-null float64
1977              136 non-null float64
1978              136 non-null float64
1979              136 non-null float64
1980              136 non-null float64
1981              136 non-null float64
1982              136 non-null float64
1983              136 non-null float64
1984              136 non-null float64
1985              136 non-null float64
1986              136 non-null float64
1987              136 non-null float64
1988              136 non-null float64
1989              136 non-null float64
1990              136 non-null float64
1991              136 non-null float64
1992              136 non-null float64
1993              136 non-null float64
1994              136 non-null float64
1995              136 non-null float64
1996              136 non-null float64
1997              136 non-null float64
1998              136 non-null float64
1999              136 non-null float64
2000              136 non-null float64
2001              136 non-null float64
2002              136 non-null float64
2003              136 non-null float64
2004              136 non-null float64
2005              136 non-null float64
2006              136 non-null float64
2007              136 non-null float64
2008              136 non-null float64
2009              136 non-null float64
2010              136 non-null float64
2011              136 non-null float64
2012              136 non-null float64
2013              136 non-null float64
2014              136 non-null float64
2015              136 non-null float64
2016              0 non-null float64
Unnamed: 61       0 non-null float64
dtypes: float64(58), object(4)
memory usage: 66.9+ KB

In [79]:
#Exportar archivo df.to<TAB> podra ver la gama de opciones para exportación de ficheros
ficherosalida = 'ficheroexcelsalida.xlsx'
dfiltrado.to_excel(ficherosalida)