In [2]:
from lxml import etree
import re
import math
import numpy as np
import pandas as pd
from pprint import pprint
from time import time
from sklearn import metrics
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.cluster import DBSCAN
from sklearn.decomposition import TruncatedSVD, PCA, NMF
from sklearn.preprocessing import Normalizer
from sklearn.pipeline import Pipeline
from sklearn.mixture import BayesianGaussianMixture, GaussianMixture
from sklearn.model_selection import GridSearchCV
from sklearn import metrics
from matplotlib import pyplot as plt
from sklearn.cluster import KMeans, MiniBatchKMeans
%matplotlib inline
plt.style.use('ggplot')

In [44]:
class Text(BaseEstimator, TransformerMixin): 
    def __init__(self, lenMin=2000, lenMax=10000, chunks=False): 
        self.lenMin = lenMin
        self.lenMax = lenMax
        self.chunks=chunks
        
    def fit(self, *_):
#         print('heyo! fitting')
        return self

    def transform(self, filename): 
#         print('heyo! transforming')
        lenMin, lenMax = self.lenMin, self.lenMax
        self.tree = etree.parse(filename)
        self.allSaidElems = self.tree.findall('.//said[@who]')
        # Only get those in our length range
        self.saidElems = [elem for elem in self.allSaidElems if len(elem.text)>lenMin and len(elem.text)<lenMax]
        self.allChars = [elem.attrib['who'] for elem in self.saidElems]
        self.chars = list(set(self.allChars))
        self.labeledText = [(elem.attrib['who'], elem.text) for elem in self.saidElems]
        self.labeledText = [(item[0], self.clean(item[1])) for item in self.labeledText]
        self.labels = [item[0] for item in self.labeledText]
        self.allText = [item[1] for item in self.labeledText]
        return
        self.charDict = self.makeCharDict()
        self.charChunks, self.charChunksLabels = self.makeCharChunks()
        if self.chunks: 
            self.allText = self.charChunks
            self.labels = self.charChunksLabels
            self.numericLabels = [charDict[label.split('-')[0]] for label in self.labels]
        self.lengths = [len(item) for item in self.allText]
        return self.allText
        
    def makeCharDict(self): 
        """ Make a dictionary of each character's total speech. """
        # Initialize empty dictionary. 
        charDict = {char: "" for char in self.chars}
        for elem in self.allSaidElems: 
            charDict[elem.attrib['who']]+=self.clean(elem.text)
        return charDict
            
    def makeCharChunks(self, n=2): 
        """ Make a list of chunks of character speech. """
        charChunks = []
        charChunksLabels = []
        for char, text in self.charDict.items(): 
            chunks = self.sliceText(text)
            for i, chunk in enumerate(chunks): 
                charChunks.append(chunk)
                charChunksLabels.append(char + '-%s' % i)
        return charChunks, charChunksLabels
        
    def sliceText(self, text, size=8000):
        parts = []
        while len(text) > size: 
            part = text[:size]
            text = text[size:]
            parts.append(part)
        return parts

    def clean(self, utterance): 
        """ 
        Cleans utterances. 
        """
        # Remove "said Bernard," etc. 
        charRegex = "said (%s)" % '|'.join(self.chars)
        out = re.sub(charRegex, '', utterance)
       
        # Remove quotation marks. 
        out = re.sub('[“”"]', '', out)
        
        # Remove line breaks. 
        out = re.sub('\n', ' ', out)
        return out

In [45]:
# Code adapted from http://stackoverflow.com/a/28384887/584121
class DenseTransformer(TransformerMixin):
    
    def __init__(self, *args, **kwargs): 
        return

    def get_params(self, deep=True): 
        """ Dummy method. """
        return {'None': 'None'}
    
    def transform(self, X, y=None, **fit_params):
        return X.todense()

    def fit_transform(self, X, y=None, **fit_params):
        self.fit(X, y, **fit_params)
        return self.transform(X)

    def fit(self, X, y=None, **fit_params):
        return self

In [46]:
transformPipeline = Pipeline([    
                         ('tfidf', TfidfVectorizer(max_df=0.3,
                                                  max_features=500)),
                         ('todense', DenseTransformer()),
                         ('pca', PCA(n_components=5)),
                        ])

In [47]:
text = Text().fit()
text.transform('gatsby.xml')

In [48]:
text.allChars


Out[48]:
[]

In [39]:
text = Text(lenMin=0, lenMax=100000000000, chunks=True).fit()
docs = text.transform('gatsby.xml')
labels = text.numericLabels
pd.Series([len(doc) for doc in docs]).hist()


---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-39-1bdcfb208020> in <module>()
      1 text = Text(lenMin=0, lenMax=100000000000, chunks=True).fit()
----> 2 docs = text.transform('gatsby.xml')
      3 labels = text.numericLabels
      4 pd.Series([len(doc) for doc in docs]).hist()

<ipython-input-3-c0582026680b> in transform(self, filename)
     23         charDict = {'Bernard': 0, 'Louis': 1, 'Neville': 2,
     24                 'Rhoda': 3, 'Jinny': 4, 'Susan': 5}
---> 25         self.numericLabels = [charDict[label] for label in self.labels]
     26         self.allText = [item[1] for item in self.labeledText]
     27         self.charDict = self.makeCharDict()

<ipython-input-3-c0582026680b> in <listcomp>(.0)
     23         charDict = {'Bernard': 0, 'Louis': 1, 'Neville': 2,
     24                 'Rhoda': 3, 'Jinny': 4, 'Susan': 5}
---> 25         self.numericLabels = [charDict[label] for label in self.labels]
     26         self.allText = [item[1] for item in self.labeledText]
     27         self.charDict = self.makeCharDict()

KeyError: 'Mr.Carraway'

In [31]:
transformed = transformPipeline.fit_transform(docs)
transformed.shape


Out[31]:
(44, 5)

In [32]:
gmm = GaussianMixture(n_components=6).fit(transformed)
assignments = gmm.predict(transformed)
assignments


Out[32]:
array([2, 2, 2, 2, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 2, 0, 0, 2, 4, 3,
       1, 1, 5, 3, 4, 5, 5, 3, 3, 5, 1, 1, 3, 5, 1, 5, 2, 1, 2, 1, 1])

In [33]:
metrics.adjusted_rand_score(assignments, labels)


Out[33]:
0.17948752428914336

In [34]:
metrics.adjusted_mutual_info_score(assignments, labels)


Out[34]:
0.36921165202220274

In [35]:
def translateNumColor(colorList): 
    colorDict = 'rgbcymk'
    return [colorDict[numColor] for numColor in colorList]

In [36]:
plt.scatter(transformed[:,0], transformed[:,1], 
            c=translateNumColor(labels))


Out[36]:
<matplotlib.collections.PathCollection at 0x7f3602cd8160>

In [37]:
plt.scatter(transformed[:,0], transformed[:,1], 
            c=translateNumColor(assignments))


Out[37]:
<matplotlib.collections.PathCollection at 0x7f3602cf2198>

In [ ]: