In [1]:
from sympy import init_printing; init_printing(use_latex='mathjax')
import sympy as sym
In [6]:
r, theta, k = sym.symbols('r theta k')
r, theta, k
Out[6]:
In [7]:
n = sym.Symbol('n', positive = True, integer=True)
n
Out[7]:
In [8]:
def lamb(n,k):
return sym.Symbol('lambda_%s%s'%(n,k), positive = True)
In [10]:
lamb(0,k)
Out[10]:
In [11]:
f = 1 - r**2; f
Out[11]:
In [13]:
integrand = f * sym.besselj(n, lamb(n,k) * r) * sym.cos(n *theta) * r
integrand
Out[13]:
In [14]:
ank = sym.Integral(integrand, (r, 0, 1), (theta, 0, 2*sym.pi))
ank
Out[14]:
In [15]:
solution = ank.doit()
solution
Out[15]:
In [16]:
integ = lambda n: f * sym.besselj(n, lamb(n,k) * r) * sym.cos(n*theta) * r
In [17]:
integ(0)
Out[17]:
In [18]:
a0k = sym.Integral(integ(0), (r, 0, 1), (theta, 0, 2*sym.pi))
a0k
Out[18]:
In [19]:
a0k.doit()
Out[19]:
In [ ]: