In [1]:
import sqlite3
import numpy as np
import scipy.linalg as lg
import scipy.integrate as it
import matplotlib.pyplot as plt
import scipy.constants as ct
import copy
from matplotlib.mlab import griddata
from matplotlib.colors import LogNorm
from matplotlib import ticker
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0)
hbar=ct.physical_constants["Planck constant over 2 pi in eV s"][0]
T=300
kbT=T*ct.physical_constants["Boltzmann constant in eV/K"][0]
In [2]:
sqlname="system_individualmps.sql"
sqlstatement="SELECT pairs.seg1, pairs.seg2, pairs.Jeff2s, seg1.eSinglet, seg1.UnXnNs, seg1.UxNxXs, seg2.eSinglet, seg2.UnXnNs, seg2.UxNxXs FROM pairs JOIN segments seg1 ON seg1._id =pairs.seg1 JOIN segments seg2 ON seg2._id =pairs.seg2"
con = sqlite3.connect(sqlname)
with con:
cur = con.cursor()
cur.execute(sqlstatement)
rows = cur.fetchall()
sql=np.array(rows)
lowerlimit=0
reorg12=sql[:,4]+sql[:,8]
dG12=-sql[:,3]+sql[:,6]
reorg21=sql[:,5]+sql[:,7]
dG21=-dG12
rates12=2*np.pi/hbar*sql[:,2]/np.sqrt(4*np.pi*kbT*reorg12)*np.exp(-(dG12+reorg12)**2/(4*reorg12*kbT))
rates21=2*np.pi/hbar*sql[:,2]/np.sqrt(4*np.pi*kbT*reorg21)*np.exp(-(dG21+reorg21)**2/(4*reorg21*kbT))
maxi=np.max([np.max(rates12),np.max(rates21)])
print maxi
sqlstatement="SELECT box11,box12,box13,box21,box22,box23,box31,box32,box33 from frames"
con = sqlite3.connect(sqlname)
with con:
cur = con.cursor()
cur.execute(sqlstatement)
vecs = cur.fetchall()
box=np.array(vecs).reshape((3,3))
print box
sqlstatement="SELECT posX,posY,posZ from segments"
con = sqlite3.connect(sqlname)
with con:
cur = con.cursor()
cur.execute(sqlstatement)
rows2 = cur.fetchall()
positions=np.array(rows2)
#dimension=int(max(np.max(sql[:,0]),np.max(sql[:,1])))
dimension=1568
print dimension
matrix=np.zeros((dimension,dimension))
print len(rows)
for k in range(len(rows)):
rate12=rates12[k]
rate21=rates21[k]
row=rows[k]
i=row[0]-1
j=row[1]-1
matrix[i,j]=rate12
matrix[i,i]-=rate12
matrix[j,i]=rate21
matrix[j,j]-=rate21
In [23]:
tau=0.01/np.max(matrix)
In [24]:
tau
Out[24]:
In [25]:
trans=(lg.expm(tau*matrix)).T
In [32]:
trans1=trans/(np.sum(trans,axis=1)[:,None])
print np.linalg.det(trans)
print np.sum(trans1,axis=1)
In [33]:
values1,vectors1=lg.eigh(trans1)
In [34]:
values,vectors=lg.eigh(trans)
In [36]:
values,values1
Out[36]:
In [ ]: