In [13]:
import numpy as np
import scipy as sp
import scipy.misc as spm
import matplotlib.pyplot as plt
%matplotlib inline
In [14]:
#reading in file
x=[]
y=[]
with open("1CN.txt","r") as f:
lines=f.readlines()
for line in lines:
if "#" not in line:
x.append(float(line.split()[0]))
y.append(float(line.split()[1]))
xwavenumber=np.array(x)
y=np.array(y)
xeV=xwavenumber*1.23984/10000.0
plt.plot(xeV,y,"--",linewidth=2)
Out[14]:
In [15]:
#Constant parameters to be entered into fit
i_max=5
m_max=4
mij=np.arange(m_max)
for i in range(i_max-1):
mij=np.vstack((mij,np.arange(m_max)))
omegai=0.001*np.arange(1,i_max+1)
n=1.1
print mij
S=np.arange(i_max)
sigma=np.ones(m_max**2)
sigma
Out[15]:
In [16]:
def Io(S,m):
return np.exp(-S)*np.power(S,mij.T)#/spm.factorial(mij.T)
print Io(S,mij)
print spm.factorial(mij)
In [17]:
def Gamma(omega,omega0,mij,omegai,sigma):
#print np.sum(mij.T*omegai,axis=0)
return 1/(sigma*np.sqrt(2*np.pi))*np.exp((-0.5*(omega-omega0-np.sum(mij.T*omegai,axis=0))[:,np.newaxis]/sigma)**2)
print Gamma(0.1,0.004,mij,omegai,sigma)
In [17]:
In [17]: