$x(t)$ frequentie $\omega$ periode $T$
sin($t$) $1$ $2\pi$
cos($3t$) 3 $2/3 \pi$
sin(($1.5t$) 1.5 $4/3 \pi$
sin($0.5t$) 0.5 $4 \pi$
sin($\pi/3t$) $\pi/3$ 6
sin($0.4t$) 0.4 $5\pi$

In [1]:
%matplotlib inline
from numpy import arange, sin, cos, pi
import matplotlib.pyplot as plt

def sinplot(omega, func=sin, a=1, offset=0, show=True):
    T = 2*pi/omega
    t = arange(0.0, T, 0.01)
    plt.figure(figsize=(8, 8))
    ax = plt.gca()
    ax.set_xlim([0,(2*pi)/omega])
    ax.set_ylim([a*-1.1, a*1.1])
    for i, val in enumerate(ax.spines.values()):
        if i % 2:
            val.set_position('zero')
        else:
            val.set_position('center')
    plt.plot(t, func(omega*t))
    plt.draw()
    plt.show()
    
sinplot(1)
sinplot(3, func=cos)
sinplot(1.5)
sinplot(0.5)
sinplot(pi/3)
sinplot(0.4)



In [2]:
%matplotlib inline
from numpy import arange, sin, cos, pi
import matplotlib.pyplot as plt
s = lambda omega, t: sin(omega*t)/omega

s1 = lambda t: s(1, t)
s3 = lambda t: s(3, t)
s5 = lambda t: s(5, t)
s7 = lambda t: s(7, t)
t = arange(0.0, 2*pi, 0.01)

plt.plot(s1(t))
plt.plot(s3(t))
plt.plot(s1(t) + s3(t))
plt.show()


plt.plot(s1(t))
plt.plot(s3(t))
plt.plot(s5(t))
plt.plot(s1(t) + s3(t) + s5(t))
plt.show()

plt.plot(s1(t))
plt.plot(s3(t))
plt.plot(s5(t))
plt.plot(s7(t))
plt.plot(s1(t) + s3(t) + s5(t) + s7(t))
plt.show()

total = 0
for i in range(1, 28, 2):
    plt.plot(s(i, t))
    total += s(i, t)
plt.plot(total)
plt.show()