1.1


In [17]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
z1 = 1 + 2j
z2 = 2 + 1j

def show_graph(imag_items, labels=None):
    coords = tuple(map(lambda x: (x.real, x.imag), imag_items))
    arrows = np.array(list(map(lambda x: (0,0,x[0],x[1]), coords)))
    X,Y,U,V = zip(*arrows)
    plt.figure(figsize=(8, 8))
    ax = plt.gca()
    ax.set_aspect('equal', adjustable='box')
    ax.quiver(X,Y,U,V,angles='xy',scale_units='xy',scale=1)
    
    max_number = 0
    for c in coords:
        max_number =max(max_number, max(map(abs, c)))
    max_number += 1
    ax.set_xlim([-max_number,max_number])
    ax.set_ylim([-max_number,max_number])

    for val in ax.spines.values():
        val.set_position('center')
        
    if labels is not None:
        for coord, label in zip(coords, labels):
            plt.annotate(label, xy=coord)

    plt.draw()
    plt.show()

show_graph((z1, z2), ('z1', 'z2'))


1.2


In [18]:
import cmath as cm
import math as m
z1 = 1 + 2j
z2 = 2 + 1j
print('abs z1:', abs(z1), '\nphase z1', (cm.phase(z1)/m.pi)*180)
print('abs z2:', abs(z2), '\nphase z2', (cm.phase(z2)/m.pi)*180)


abs z1: 2.23606797749979 
phase z1 63.43494882292201
abs z2: 2.23606797749979 
phase z2 26.565051177077986

1.3


In [19]:
show_graph((z1, z2, 3 + 3j), ('z1', 'z2', 'z1 + z2'))
show_graph((z1, z2, -1 + 1j), ('z1', 'z2', 'z1 - z2'))


1.4


In [20]:
def ctimes(z1, z2):
    a = z1.real
    b = z1.imag
    c = z2.real
    d = z2.imag
    return (a*c - b*d) + (a*d + b*c)*1j
show_graph((z1, z2, ctimes(z1, z2)), ('z1', 'z2', 'z1 * z2'))

def cdiv(z1, z2):
    a = z1.real
    b = z1.imag
    c = z2.real
    d = z2.imag
    return (a*c + b*d)/(c**2 + d**2) + ((b*c - a*d)/(c**2 + d**2))*1j
show_graph((z1, z2, cdiv(z1, z2)), ('z1', 'z2', 'z1 / z2'))


1.5


In [21]:
z1d = 1/z1
z2d = 1/z2
print(z1d, z2d)
show_graph((z1d, z2d, ctimes(z1d, z2d)), ('1/z1', '1/z2', '1/z1 * 1/z2'))
show_graph((z1d, z2d, cdiv(z1d, z2d)), ('1/z1', '1/z2', '(1/z1) / (1/z2)'))


(0.2-0.4j) (0.4-0.2j)
complex getal reële deel imaginaire deel absolute waarde hoek in graden
$z_1 = 1 + 2j$ 1 2 2.24 63.4
$z_2 = 2 + j$ 2 1 2.24 26.6
$z_1 + z_2$ 3 3 $\sqrt{2*3^2} = 4.24$ 45
$z_1 - z_2$ -1 1 $\sqrt{2}$ 45
$z_1 \times z_2$ 0 5.02 $2.24 * 2.24 = 5.02$ 90
$z_1 / z_2$ $4/5$ $3/5$ $2.24/2.24 = 1$ $63.4 - 26.6 = 36.8$
$1/z_1$ $1/5$ $-2/5$ $1/2.24 = 0.45$ -63.4
$1/z_2$ $2/5$ $-1/5$ 0.45 -26.6

2

complex getal reële deel imaginaire deel absolute waarde hoek in graden
$z_1 = 1 + 2j$ 1 1 $\sqrt{2}$ 45
$z_2 = 2 + j$ -1 1 $\sqrt{2}$ 135
$z_1 + z_2$ 0 2 2 90
$z_1 - z_2$ 2 0 2 0
$z_1 \times z_2$ -2 0 2 180
$z_1 / z_2$ 0 -1 1 -90
$1/z_1$ $0.5$ $-0.5$ $1/\sqrt{2}$ -45
$1/z_2$ $-0.5$ $-0.5$ $1/\sqrt{2}$ -135

3

4.1

z1: abs = $\sqrt{2}$, hoek=45

z2: abs = 0.781, hoek=50

4.2


In [22]:
z1 = m.sqrt(2)*m.e**0.7854j
z2 = 0.781*m.e**0.876j

print('real:', z1.real, ', img:', z1.imag)
print('real:', z2.real, ', img:', z2.imag)


real: 0.9999981633957618 , img: 1.0000018366008652
real: 0.5000188445409669 , img: 0.5999517939834137

4.3

$z1*z2$: abs=$0.781\sqrt{2}$, hoek=95

$z1/z2$: abs=$\sqrt{2}/0.781$, hoek=5

4.4


In [23]:
show_graph((z1, z2, z1*z2, z1/z2), ('z1', 'z2', 'z1 * z2', 'z1/z2'))