Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [5]:
data_dir = './data'
import helper

In [1]:
# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Downloading mnist: 9.92MB [00:04, 2.28MB/s]                            
Extracting mnist: 100%|██████████| 60.0K/60.0K [00:10<00:00, 5.83KFile/s]
Downloading celeba: 1.44GB [02:18, 10.5MB/s]                               
Extracting celeba...

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [6]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[6]:
<matplotlib.image.AxesImage at 0x7f1011851668>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [7]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[7]:
<matplotlib.image.AxesImage at 0x7f1011802588>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [8]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.1.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [9]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    inputs_real = tf.placeholder(dtype=tf.float32, shape=[None, image_height, image_width, image_channels], name='input_real')
    inputs_z = tf.placeholder(dtype=tf.float32, shape=(None, z_dim), name='input_z')
    learning_rate = tf.placeholder(dtype=tf.float32, name='learning_rate')
    return inputs_real, inputs_z, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).


In [10]:
def discriminator(images, reuse=False, alpha=0.2):
    """
    Create the discriminator network
    :param images: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    with tf.variable_scope('discriminator', reuse=reuse):
        # Input layer is 28x28x3
        images1 = tf.layers.conv2d(images, 64, 5, strides=2, padding='same')
        relu1 = tf.maximum(alpha * images1, images1)
        # 14x14x64
        
        images2 = tf.layers.conv2d(relu1, 128, 5, strides=2, padding='same')
        bn2 = tf.layers.batch_normalization(images2, training=True)
        relu2 = tf.maximum(alpha * bn2, bn2)
        # 7x7x128
        
        images3 = tf.layers.conv2d(relu2, 256, 5, strides=2, padding='same')
        bn3 = tf.layers.batch_normalization(images3, training=True)
        relu3 = tf.maximum(alpha * bn3, bn3)
        # 3.5x3.5x256 !!!

        # Flatten it
        flat = tf.reshape(relu3, (-1, 4*4*256))
        logits = tf.layers.dense(flat, 1)
        out = tf.sigmoid(logits)
        
        return out, logits


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variables in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [11]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    
    """
    reuse = not is_train
    alpha=0.2
    
    with tf.variable_scope('generator', reuse=reuse):
        # First fully connected layer
        x1 = tf.layers.dense(z, 4*4*512)
        # Reshape it to start the convolutional stack
        x1 = tf.reshape(x1, (-1, 4, 4, 512))
        x1 = tf.layers.batch_normalization(x1, training=is_train)
        x1 = tf.maximum(alpha * x1, x1)
        # 4x4x512 now
 
        # use valid padding to change down to 7X7.. I still don't really understand how this works
        x2 = tf.layers.conv2d_transpose(x1, 256, 4, strides=1, padding='valid')
        x2 = tf.layers.batch_normalization(x2, training=is_train)
        x2 = tf.maximum(alpha * x2, x2)
        # 7X7X256
        
        
        x3 = tf.layers.conv2d_transpose(x2, 128, 5, strides=2, padding='same')
        x3 = tf.layers.batch_normalization(x3, training=is_train)
        x3 = tf.maximum(alpha * x3, x3)
        # 14X14X128
        
        # Output layer
        logits = tf.layers.conv2d_transpose(x3, out_channel_dim, 5, strides=2, padding='same')
        # 28x28x3
        
        out = tf.tanh(logits)
        
        return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [12]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)

    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake

    return d_loss, g_loss
    
    
    return None, None


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [13]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # Get weights and bias to update
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)

    return d_train_opt, g_train_opt

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [14]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [15]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    input_real, input_z, learningrate = model_inputs(data_shape[1], data_shape[2], data_shape[3], z_dim)
    
    d_loss, g_loss = model_loss(input_real, input_z, data_shape[3])
    d_opt, g_opt = model_opt(d_loss, g_loss, learningrate, beta1)    
    steps = 0
    show_every=100
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                steps += 1
                
                batch_images *= 2
                
                # random input sample for generator
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))

                # 2 simultaneous optimisers
                _ = sess.run(d_opt, feed_dict={input_real: batch_images, input_z: batch_z, learningrate: learning_rate})
                _ = sess.run(g_opt, feed_dict={input_z: batch_z, input_real: batch_images, learningrate: learning_rate})

                if steps % show_every == 0:
                    train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images})
                    train_loss_g = g_loss.eval({input_z: batch_z})

                    print("Epoch {}/{} Step {}...".format(epoch_i+1, epoch_count, steps),
                          "Discrimnator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))

                    show_generator_output(sess, 25, input_z, data_shape[3], data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [12]:
batch_size = 32
z_dim = 100
learning_rate = 0.0005
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2 Step 100... Discrimnator Loss: 0.9849... Generator Loss: 1.0472
Epoch 1/2 Step 200... Discrimnator Loss: 0.9713... Generator Loss: 2.5956
Epoch 1/2 Step 300... Discrimnator Loss: 1.0436... Generator Loss: 0.9624
Epoch 1/2 Step 400... Discrimnator Loss: 0.8005... Generator Loss: 1.1855
Epoch 1/2 Step 500... Discrimnator Loss: 1.1961... Generator Loss: 0.4863
Epoch 1/2 Step 600... Discrimnator Loss: 1.0789... Generator Loss: 0.7891
Epoch 1/2 Step 700... Discrimnator Loss: 0.9802... Generator Loss: 1.5953
Epoch 1/2 Step 800... Discrimnator Loss: 1.1360... Generator Loss: 2.7865
Epoch 1/2 Step 900... Discrimnator Loss: 1.8373... Generator Loss: 0.2881
Epoch 1/2 Step 1000... Discrimnator Loss: 1.2287... Generator Loss: 1.0836
Epoch 1/2 Step 1100... Discrimnator Loss: 0.7700... Generator Loss: 1.0660
Epoch 1/2 Step 1200... Discrimnator Loss: 1.0096... Generator Loss: 0.7113
Epoch 1/2 Step 1300... Discrimnator Loss: 0.6203... Generator Loss: 1.1056
Epoch 1/2 Step 1400... Discrimnator Loss: 0.7568... Generator Loss: 0.9530
Epoch 1/2 Step 1500... Discrimnator Loss: 0.6097... Generator Loss: 1.0590
Epoch 1/2 Step 1600... Discrimnator Loss: 0.5687... Generator Loss: 1.3666
Epoch 1/2 Step 1700... Discrimnator Loss: 1.4208... Generator Loss: 0.3672
Epoch 1/2 Step 1800... Discrimnator Loss: 3.4484... Generator Loss: 0.0488
Epoch 2/2 Step 1900... Discrimnator Loss: 0.6093... Generator Loss: 1.2423
Epoch 2/2 Step 2000... Discrimnator Loss: 0.4716... Generator Loss: 1.4715
Epoch 2/2 Step 2100... Discrimnator Loss: 1.0167... Generator Loss: 0.6371
Epoch 2/2 Step 2200... Discrimnator Loss: 0.5683... Generator Loss: 1.2285
Epoch 2/2 Step 2300... Discrimnator Loss: 0.7684... Generator Loss: 0.9791
Epoch 2/2 Step 2400... Discrimnator Loss: 1.1313... Generator Loss: 0.5389
Epoch 2/2 Step 2500... Discrimnator Loss: 0.6728... Generator Loss: 1.7788
Epoch 2/2 Step 2600... Discrimnator Loss: 0.6397... Generator Loss: 1.2060
Epoch 2/2 Step 2700... Discrimnator Loss: 1.0750... Generator Loss: 0.6263
Epoch 2/2 Step 2800... Discrimnator Loss: 0.6093... Generator Loss: 1.9635
Epoch 2/2 Step 2900... Discrimnator Loss: 0.7968... Generator Loss: 0.8517
Epoch 2/2 Step 3000... Discrimnator Loss: 1.2560... Generator Loss: 0.5529
Epoch 2/2 Step 3100... Discrimnator Loss: 0.4146... Generator Loss: 1.5904
Epoch 2/2 Step 3200... Discrimnator Loss: 0.6115... Generator Loss: 1.3379
Epoch 2/2 Step 3300... Discrimnator Loss: 0.9058... Generator Loss: 0.7293
Epoch 2/2 Step 3400... Discrimnator Loss: 0.4506... Generator Loss: 1.4806
Epoch 2/2 Step 3500... Discrimnator Loss: 1.1717... Generator Loss: 0.6761
Epoch 2/2 Step 3600... Discrimnator Loss: 0.5873... Generator Loss: 1.2674
Epoch 2/2 Step 3700... Discrimnator Loss: 0.6377... Generator Loss: 1.3175

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [16]:
batch_size = 32
z_dim = 100
learning_rate = 0.0005
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/1 Step 100... Discrimnator Loss: 0.5127... Generator Loss: 6.9020
Epoch 1/1 Step 200... Discrimnator Loss: 0.9007... Generator Loss: 1.2760
Epoch 1/1 Step 300... Discrimnator Loss: 1.3339... Generator Loss: 0.6670
Epoch 1/1 Step 400... Discrimnator Loss: 1.2863... Generator Loss: 0.7695
Epoch 1/1 Step 500... Discrimnator Loss: 0.5694... Generator Loss: 2.1804
Epoch 1/1 Step 600... Discrimnator Loss: 0.4798... Generator Loss: 2.6798
Epoch 1/1 Step 700... Discrimnator Loss: 0.3382... Generator Loss: 3.0003
Epoch 1/1 Step 800... Discrimnator Loss: 0.3061... Generator Loss: 1.8339
Epoch 1/1 Step 900... Discrimnator Loss: 0.6021... Generator Loss: 1.0621
Epoch 1/1 Step 1000... Discrimnator Loss: 0.2306... Generator Loss: 6.7185
Epoch 1/1 Step 1100... Discrimnator Loss: 1.2064... Generator Loss: 0.5506
Epoch 1/1 Step 1200... Discrimnator Loss: 0.3946... Generator Loss: 2.2748
Epoch 1/1 Step 1300... Discrimnator Loss: 0.2496... Generator Loss: 4.7503
Epoch 1/1 Step 1400... Discrimnator Loss: 0.5268... Generator Loss: 4.6205
Epoch 1/1 Step 1500... Discrimnator Loss: 0.7549... Generator Loss: 0.9369
Epoch 1/1 Step 1600... Discrimnator Loss: 0.4962... Generator Loss: 1.3713
Epoch 1/1 Step 1700... Discrimnator Loss: 0.9998... Generator Loss: 0.7419
Epoch 1/1 Step 1800... Discrimnator Loss: 1.3693... Generator Loss: 2.9419
Epoch 1/1 Step 1900... Discrimnator Loss: 0.1986... Generator Loss: 3.8931
Epoch 1/1 Step 2000... Discrimnator Loss: 0.1178... Generator Loss: 2.6754
Epoch 1/1 Step 2100... Discrimnator Loss: 1.2549... Generator Loss: 0.5945
Epoch 1/1 Step 2200... Discrimnator Loss: 0.3060... Generator Loss: 4.3536
Epoch 1/1 Step 2300... Discrimnator Loss: 0.2280... Generator Loss: 3.9180
Epoch 1/1 Step 2400... Discrimnator Loss: 0.8753... Generator Loss: 1.6393
Epoch 1/1 Step 2500... Discrimnator Loss: 0.7363... Generator Loss: 1.2917
Epoch 1/1 Step 2600... Discrimnator Loss: 0.2345... Generator Loss: 3.6155
Epoch 1/1 Step 2700... Discrimnator Loss: 0.1087... Generator Loss: 3.0830
Epoch 1/1 Step 2800... Discrimnator Loss: 0.0447... Generator Loss: 3.9055
Epoch 1/1 Step 2900... Discrimnator Loss: 0.4206... Generator Loss: 4.6201
Epoch 1/1 Step 3000... Discrimnator Loss: 0.4405... Generator Loss: 3.3097
Epoch 1/1 Step 3100... Discrimnator Loss: 0.3538... Generator Loss: 3.5140
Epoch 1/1 Step 3200... Discrimnator Loss: 0.2819... Generator Loss: 3.8553
Epoch 1/1 Step 3300... Discrimnator Loss: 0.5857... Generator Loss: 1.1575
Epoch 1/1 Step 3400... Discrimnator Loss: 0.3503... Generator Loss: 1.5062
Epoch 1/1 Step 3500... Discrimnator Loss: 0.8269... Generator Loss: 0.7838
Epoch 1/1 Step 3600... Discrimnator Loss: 0.2456... Generator Loss: 2.0338
Epoch 1/1 Step 3700... Discrimnator Loss: 0.3126... Generator Loss: 1.6315
Epoch 1/1 Step 3800... Discrimnator Loss: 1.9063... Generator Loss: 0.3260
Epoch 1/1 Step 3900... Discrimnator Loss: 0.1254... Generator Loss: 3.2379
Epoch 1/1 Step 4000... Discrimnator Loss: 0.1243... Generator Loss: 2.8173
Epoch 1/1 Step 4100... Discrimnator Loss: 0.4421... Generator Loss: 1.5734
Epoch 1/1 Step 4200... Discrimnator Loss: 0.2212... Generator Loss: 2.2985
Epoch 1/1 Step 4300... Discrimnator Loss: 1.4402... Generator Loss: 0.5599
Epoch 1/1 Step 4400... Discrimnator Loss: 0.4144... Generator Loss: 1.4346
Epoch 1/1 Step 4500... Discrimnator Loss: 0.1584... Generator Loss: 3.6649
Epoch 1/1 Step 4600... Discrimnator Loss: 0.9438... Generator Loss: 5.7276
Epoch 1/1 Step 4700... Discrimnator Loss: 0.0373... Generator Loss: 4.2734
Epoch 1/1 Step 4800... Discrimnator Loss: 0.0577... Generator Loss: 5.3463
Epoch 1/1 Step 4900... Discrimnator Loss: 0.5793... Generator Loss: 1.2518
Epoch 1/1 Step 5000... Discrimnator Loss: 0.0464... Generator Loss: 4.2891
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-16-809ab22c6992> in <module>()
     13 with tf.Graph().as_default():
     14     train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
---> 15           celeba_dataset.shape, celeba_dataset.image_mode)

<ipython-input-15-200a7227d96c> in train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode)
     30 
     31                 # 2 simultaneous optimisers
---> 32                 _ = sess.run(d_opt, feed_dict={input_real: batch_images, input_z: batch_z, learningrate: learning_rate})
     33                 _ = sess.run(g_opt, feed_dict={input_z: batch_z, input_real: batch_images, learningrate: learning_rate})
     34 

/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
    776     try:
    777       result = self._run(None, fetches, feed_dict, options_ptr,
--> 778                          run_metadata_ptr)
    779       if run_metadata:
    780         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
    980     if final_fetches or final_targets:
    981       results = self._do_run(handle, final_targets, final_fetches,
--> 982                              feed_dict_string, options, run_metadata)
    983     else:
    984       results = []

/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1030     if handle is None:
   1031       return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1032                            target_list, options, run_metadata)
   1033     else:
   1034       return self._do_call(_prun_fn, self._session, handle, feed_dict,

/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
   1037   def _do_call(self, fn, *args):
   1038     try:
-> 1039       return fn(*args)
   1040     except errors.OpError as e:
   1041       message = compat.as_text(e.message)

/home/carnd/anaconda3/envs/dl/lib/python3.5/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
   1019         return tf_session.TF_Run(session, options,
   1020                                  feed_dict, fetch_list, target_list,
-> 1021                                  status, run_metadata)
   1022 
   1023     def _prun_fn(session, handle, feed_dict, fetch_list):

KeyboardInterrupt: 

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.