In [39]:
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.cross_validation import train_test_split
from sklearn import metrics
from sklearn.linear_model import SGDClassifier
from sklearn import linear_model
from sklearn import svm
In [40]:
linear = svm.SVC()
df = pd.read_csv("./app/Python/FINALOBAMA.csv", header=0)
In [80]:
xtrain, xtest, ytrain, ytest = train_test_split(df['Close'], df['Approval'], train_size = 0.8)
In [81]:
linear.fit(pd.DataFrame(xtrain), pd.DataFrame(ytrain))
Out[81]:
In [82]:
output = linear.predict(pd.DataFrame(xtest))
In [83]:
ytest = ytest.reset_index()["Approval"]
In [88]:
for i in range (0, len(output)):
difference = output[i] - ytest[i]
print difference, output[i], ytest[i]
In [89]:
linear.score(pd.DataFrame(xtrain), pd.DataFrame(ytrain))
Out[89]:
In [ ]: