In [6]:
import numpy as np
#交换矩阵的其中两行
a = np.arange(25).reshape(5,5)
print a
a[[0,1]] = a[[1,0]]
print a


[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
[[ 5  6  7  8  9]
 [ 0  1  2  3  4]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]

In [7]:
#找出数组中与给定值最接近的数
z = np.array([[0,1,2,3],[4,5,6,7]])
a = 5.1
print np.abs(z-a).argmin()


5

In [9]:
#判断二维矩阵中有没有一整列数为0?
z = np.random.randint(0,3,(2,10))
print z
print z.any(axis=0)


[[1 1 2 0 0 1 1 0 2 2]
 [0 0 2 1 0 2 1 0 1 0]]
[ True  True  True  True False  True  True False  True  True]

In [15]:
#生成二维的高斯矩阵
help(np.random.randint)


Help on built-in function randint:

randint(...)
    randint(low, high=None, size=None)
    
    Return random integers from `low` (inclusive) to `high` (exclusive).
    
    Return random integers from the "discrete uniform" distribution in the
    "half-open" interval [`low`, `high`). If `high` is None (the default),
    then results are from [0, `low`).
    
    Parameters
    ----------
    low : int
        Lowest (signed) integer to be drawn from the distribution (unless
        ``high=None``, in which case this parameter is the *highest* such
        integer).
    high : int, optional
        If provided, one above the largest (signed) integer to be drawn
        from the distribution (see above for behavior if ``high=None``).
    size : int or tuple of ints, optional
        Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
        ``m * n * k`` samples are drawn.  Default is None, in which case a
        single value is returned.
    
    Returns
    -------
    out : int or ndarray of ints
        `size`-shaped array of random integers from the appropriate
        distribution, or a single such random int if `size` not provided.
    
    See Also
    --------
    random.random_integers : similar to `randint`, only for the closed
        interval [`low`, `high`], and 1 is the lowest value if `high` is
        omitted. In particular, this other one is the one to use to generate
        uniformly distributed discrete non-integers.
    
    Examples
    --------
    >>> np.random.randint(2, size=10)
    array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
    >>> np.random.randint(1, size=10)
    array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
    
    Generate a 2 x 4 array of ints between 0 and 4, inclusive:
    
    >>> np.random.randint(5, size=(2, 4))
    array([[4, 0, 2, 1],
           [3, 2, 2, 0]])


In [14]:
x,y = np.meshgrid(np.linspace(-1,1,10),np.linspace(-1,1,10))
print x
print y
D = np.sqrt(x**2+y**2)
print D
sigma,mu = 1,0
a = np.exp(-(D-mu)**2/(2*sigma**2))
print a


[[-1.         -0.77777778 -0.55555556 -0.33333333 -0.11111111  0.11111111
   0.33333333  0.55555556  0.77777778  1.        ]
 [-1.         -0.77777778 -0.55555556 -0.33333333 -0.11111111  0.11111111
   0.33333333  0.55555556  0.77777778  1.        ]
 [-1.         -0.77777778 -0.55555556 -0.33333333 -0.11111111  0.11111111
   0.33333333  0.55555556  0.77777778  1.        ]
 [-1.         -0.77777778 -0.55555556 -0.33333333 -0.11111111  0.11111111
   0.33333333  0.55555556  0.77777778  1.        ]
 [-1.         -0.77777778 -0.55555556 -0.33333333 -0.11111111  0.11111111
   0.33333333  0.55555556  0.77777778  1.        ]
 [-1.         -0.77777778 -0.55555556 -0.33333333 -0.11111111  0.11111111
   0.33333333  0.55555556  0.77777778  1.        ]
 [-1.         -0.77777778 -0.55555556 -0.33333333 -0.11111111  0.11111111
   0.33333333  0.55555556  0.77777778  1.        ]
 [-1.         -0.77777778 -0.55555556 -0.33333333 -0.11111111  0.11111111
   0.33333333  0.55555556  0.77777778  1.        ]
 [-1.         -0.77777778 -0.55555556 -0.33333333 -0.11111111  0.11111111
   0.33333333  0.55555556  0.77777778  1.        ]
 [-1.         -0.77777778 -0.55555556 -0.33333333 -0.11111111  0.11111111
   0.33333333  0.55555556  0.77777778  1.        ]]
[[-1.         -1.         -1.         -1.         -1.         -1.         -1.
  -1.         -1.         -1.        ]
 [-0.77777778 -0.77777778 -0.77777778 -0.77777778 -0.77777778 -0.77777778
  -0.77777778 -0.77777778 -0.77777778 -0.77777778]
 [-0.55555556 -0.55555556 -0.55555556 -0.55555556 -0.55555556 -0.55555556
  -0.55555556 -0.55555556 -0.55555556 -0.55555556]
 [-0.33333333 -0.33333333 -0.33333333 -0.33333333 -0.33333333 -0.33333333
  -0.33333333 -0.33333333 -0.33333333 -0.33333333]
 [-0.11111111 -0.11111111 -0.11111111 -0.11111111 -0.11111111 -0.11111111
  -0.11111111 -0.11111111 -0.11111111 -0.11111111]
 [ 0.11111111  0.11111111  0.11111111  0.11111111  0.11111111  0.11111111
   0.11111111  0.11111111  0.11111111  0.11111111]
 [ 0.33333333  0.33333333  0.33333333  0.33333333  0.33333333  0.33333333
   0.33333333  0.33333333  0.33333333  0.33333333]
 [ 0.55555556  0.55555556  0.55555556  0.55555556  0.55555556  0.55555556
   0.55555556  0.55555556  0.55555556  0.55555556]
 [ 0.77777778  0.77777778  0.77777778  0.77777778  0.77777778  0.77777778
   0.77777778  0.77777778  0.77777778  0.77777778]
 [ 1.          1.          1.          1.          1.          1.          1.
   1.          1.          1.        ]]
[[ 1.41421356  1.26686158  1.1439589   1.05409255  1.0061539   1.0061539
   1.05409255  1.1439589   1.26686158  1.41421356]
 [ 1.26686158  1.09994388  0.95581392  0.84619701  0.7856742   0.7856742
   0.84619701  0.95581392  1.09994388  1.26686158]
 [ 1.1439589   0.95581392  0.7856742   0.64788354  0.56655772  0.56655772
   0.64788354  0.7856742   0.95581392  1.1439589 ]
 [ 1.05409255  0.84619701  0.64788354  0.47140452  0.35136418  0.35136418
   0.47140452  0.64788354  0.84619701  1.05409255]
 [ 1.0061539   0.7856742   0.56655772  0.35136418  0.15713484  0.15713484
   0.35136418  0.56655772  0.7856742   1.0061539 ]
 [ 1.0061539   0.7856742   0.56655772  0.35136418  0.15713484  0.15713484
   0.35136418  0.56655772  0.7856742   1.0061539 ]
 [ 1.05409255  0.84619701  0.64788354  0.47140452  0.35136418  0.35136418
   0.47140452  0.64788354  0.84619701  1.05409255]
 [ 1.1439589   0.95581392  0.7856742   0.64788354  0.56655772  0.56655772
   0.64788354  0.7856742   0.95581392  1.1439589 ]
 [ 1.26686158  1.09994388  0.95581392  0.84619701  0.7856742   0.7856742
   0.84619701  0.95581392  1.09994388  1.26686158]
 [ 1.41421356  1.26686158  1.1439589   1.05409255  1.0061539   1.0061539
   1.05409255  1.1439589   1.26686158  1.41421356]]
[[ 0.36787944  0.44822088  0.51979489  0.57375342  0.60279818  0.60279818
   0.57375342  0.51979489  0.44822088  0.36787944]
 [ 0.44822088  0.54610814  0.63331324  0.69905581  0.73444367  0.73444367
   0.69905581  0.63331324  0.54610814  0.44822088]
 [ 0.51979489  0.63331324  0.73444367  0.81068432  0.85172308  0.85172308
   0.81068432  0.73444367  0.63331324  0.51979489]
 [ 0.57375342  0.69905581  0.81068432  0.89483932  0.9401382   0.9401382
   0.89483932  0.81068432  0.69905581  0.57375342]
 [ 0.60279818  0.73444367  0.85172308  0.9401382   0.98773022  0.98773022
   0.9401382   0.85172308  0.73444367  0.60279818]
 [ 0.60279818  0.73444367  0.85172308  0.9401382   0.98773022  0.98773022
   0.9401382   0.85172308  0.73444367  0.60279818]
 [ 0.57375342  0.69905581  0.81068432  0.89483932  0.9401382   0.9401382
   0.89483932  0.81068432  0.69905581  0.57375342]
 [ 0.51979489  0.63331324  0.73444367  0.81068432  0.85172308  0.85172308
   0.81068432  0.73444367  0.63331324  0.51979489]
 [ 0.44822088  0.54610814  0.63331324  0.69905581  0.73444367  0.73444367
   0.69905581  0.63331324  0.54610814  0.44822088]
 [ 0.36787944  0.44822088  0.51979489  0.57375342  0.60279818  0.60279818
   0.57375342  0.51979489  0.44822088  0.36787944]]

In [ ]: