In [1]:
import sys
In [2]:
import re
In [3]:
import glob
import pandas as pd
In [4]:
sys.path.append('./support_files/')
In [5]:
import aggregate_mummer_results as amr
import name_extractions
In [6]:
import plotting
In [7]:
import matplotlib.pyplot as plt
import matplotlib as mpl
% matplotlib inline
In [8]:
import seaborn as sns
sns.set_style('ticks')
In [9]:
summary_df = pd.read_csv("./percent_identities.tsv", sep='\t')
In [10]:
name_extractions.summary_stat_type('estimated % identity (2)')
Out[10]:
In [11]:
summary_df.head()
Out[11]:
In [14]:
column_pairs = [
('% identity (1)', '% identity (2)'),
('% of query aligned (1)', '% of query aligned (2)'),
('estimated % identity (1)', 'estimated % identity (2)')
]
In [15]:
plotting.plot_old_versus_new_ani(summary_df, column_pairs)
In [ ]: