------------------------------------------------------------
Classification metrics on the full dataset
top_k_accuracies: [0.627, 0.791, 0.872, 0.919, 0.948, 0.963, 0.972, 0.981, 0.986, 0.99, 0.992, 0.994, 0.995, 0.997, 0.998, 0.998, 0.999, 1.0, 1.0]
                   precision    recall  f1-score  support
class_aeroplane     0.845722  0.842179  0.843947      716
class_bicycle       0.684800  0.709784  0.697068      603
class_bird          0.824087  0.753713  0.787330      808
class_boat          0.742215  0.812500  0.775769      528
class_bottle        0.528107  0.463636  0.493776      770
class_bus           0.930131  0.488532  0.640602      436
class_car           0.770690  0.478075  0.590099      935
class_cat           0.834171  0.755232  0.792741     1099
class_chair         0.650485  0.191246  0.295588     1051
class_cow           0.591912  0.501558  0.543002      321
class_diningtable   0.154143  0.615385  0.246533      130
class_dog           0.817500  0.569191  0.671113     1149
class_horse         0.574928  0.827801  0.678571      482
class_motorbike     0.708625  0.706977  0.707800      430
class_pottedplant   0.320080  0.626459  0.423684      257
class_sheep         0.594667  0.688272  0.638054      324
class_sofa          0.280967  0.657244  0.393651      283
class_train         0.537217  0.905455  0.674340      550
class_tvmonitor     0.397338  0.749104  0.519255      279
accuracy: 0.627028966012