In [ ]:
user_name = input("Please input Your name: ")
user_number = input("Please input your favorite number")
print("%s favorite number is %d" % (user_name, int(user_number)))
In [ ]:
grade = 5
In [ ]:
if grade != 5 : print("a"); print("b");
In [ ]:
import sys
In [ ]:
sys.stdin.encoding
In [ ]:
4/3
In [ ]:
4//3
In [ ]:
4%3
In [ ]:
3/4
In [ ]:
3//4
In [ ]:
3%4
In [ ]:
x_train = [1,2,3,4]
y_train = [2,4,6,8]
In [1]:
import numpy as np
In [2]:
x_train = np.array([[1,5],[2,6]])
In [3]:
x_train.shape
Out[3]:
In [4]:
from keras.datasets import mnist
In [5]:
(x_train, y_train), (x_test, y_test) = mnist.load_data()
In [6]:
print(x_train.shape)
In [7]:
type(x_train)
Out[7]:
In [8]:
print(x_train[0])
In [11]:
import matplotlib.pyplot as plt
%matplotlib inline
In [12]:
plt.imshow(x_train[0])
Out[12]:
In [14]:
print(y_train[0])
In [15]:
a = [[1,2,3,4,5]]
In [16]:
plt.imshow(a)
Out[16]:
In [17]:
random_image = np.random.random([500,500])
plt.imshow(random_image, cmap='gray', interpolation='nearest')
Out[17]:
In [18]:
from skimage import data
coins = data.coins()
print(type(coins), coins.dtype, coins.shape)
plt.imshow(coins, cmap='gray', interpolation='nearest')
Out[18]:
In [19]:
from keras.preprocessing import image
In [21]:
img = image.load_img('/Users/jaegyuhan/Pictures/study1.jpg')
In [22]:
plt.imshow(img)
Out[22]:
In [23]:
from keras.preprocessing.sequence import pad_sequences
In [24]:
x_train = [[1,2,3],[4,5],[6]]
In [25]:
print(pad_sequences(x_train, 10))
In [26]:
print(pad_sequences(x_train, 2))
In [27]:
print(pad_sequences(x_train,5,padding='post'))
In [39]:
from keras.preprocessing.text import text_to_word_sequence
from keras.preprocessing.text import one_hot
In [40]:
x_train = "나는 머신러닝이 매우 좋아요...."
In [41]:
print(text_to_word_sequence(x_train))
In [42]:
print(one_hot(x_train, len(text_to_word_sequence(x_train))))
In [49]:
from sqlalchemy import create_engine
import pandas as pd
In [48]:
engine = create_engine('mysql+pymysql://ID:PASSWD@joojungchoi.cafe24.com:3306/jpa_ex')
sql = 'select * from tbl_members'
In [50]:
x_train = pd.read_sql(sql, engine)
In [51]:
x_train.head()
Out[51]:
In [ ]: