In [1]:
import tensorflow as tf
In [2]:
print(tf.__version__)
In [3]:
import numpy as np
In [4]:
print(np.__version__)
In [6]:
data = [1.0, 2.0, 3.0, 4.0]
print(type(data))
In [7]:
arr = np.array(data)
In [9]:
print(type(arr))
In [10]:
data2D = [[1,2,3,4],[5,6,7,8]]
In [15]:
arr2D = np.array(data2D)
In [16]:
print(type(data2D))
In [17]:
np.array(data2D)
Out[17]:
In [18]:
print(arr.ndim)
In [19]:
print(arr2D.ndim)
In [20]:
arr.shape
Out[20]:
In [21]:
arr2D.shape
Out[21]:
In [22]:
arr.dtype
Out[22]:
In [23]:
print(arr.dtype)
In [24]:
z1 = np.zeros(10)
In [25]:
z1
Out[25]:
In [26]:
z1.shape
Out[26]:
In [27]:
z1.ndim
Out[27]:
In [29]:
z1 = np.zeros((20,20))
In [30]:
z1
Out[30]:
In [31]:
z1.shape
Out[31]:
In [32]:
z1.ndim
Out[32]:
In [38]:
np.random.randn(5,3)
Out[38]:
In [39]:
for n in range(10):
print(np.random.randn(5,3))
In [40]:
t1 = np.array([1,2,3,4,5])
In [41]:
type(t1)
Out[41]:
In [42]:
t1.dtype
Out[42]:
In [44]:
t1.astype(np.float64)
Out[44]:
In [48]:
type(t1.astype(np.float64).astype(np.str)[0])
Out[48]:
In [50]:
n1 = np.array([1,2,3,4,5])
In [52]:
n1.mean()
Out[52]:
In [53]:
n1.max()
Out[53]:
In [54]:
n1.sum()
Out[54]:
In [55]:
a1 = np.array([1,2,3,4])
In [56]:
a1.shape
Out[56]:
In [57]:
a1.reshape(2,2)
Out[57]:
In [58]:
a2 = a1.reshape(2,2)
In [59]:
a2.shape
Out[59]:
In [62]:
a2
Out[62]:
In [61]:
a1
Out[61]:
In [63]:
a1 = np.array([[1,2],[3,4],[5,6]])
In [64]:
a1[1]
Out[64]:
In [66]:
a1[1:2]
Out[66]:
In [73]:
a1[:,:]
Out[73]:
In [74]:
a1[:-1]
Out[74]:
In [82]:
a1[1:,1:]
Out[82]:
In [83]:
a1
Out[83]:
In [84]:
a1.T
Out[84]:
In [85]:
np.matmul(a1,a1.T)
Out[85]:
In [86]:
np.dot(a1, a1.T)
Out[86]:
In [ ]: