In [35]:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
print(tf.__version__)
print(np.__version__)
In [9]:
txt = tf.constant("Hello")
In [10]:
with tf.Session() as sess:
print(sess.run(txt))
In [11]:
with tf.Session() as sess:
print(str(sess.run(txt), encoding = "utf-8"))
In [21]:
def make_dataset():
num_points = 1000
vectors_set = []
for i in range(num_points):
x1 = np.random.normal(0.0,0.55)
y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0,0.03)
vectors_set.append([x1,y1])
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set]
return x_data, y_data
In [ ]:
In [22]:
x_data, y_data = make_dataset()
In [49]:
plt.plot(x_data, y_data, 'yo', alpha=0.5)
# plt.legend()
plt.show()
In [39]:
np.random.seed(379)
x_data = np.random.normal(0, 0.55, 1000) # 0을 기준으로 표준편차 0.55인 정규분포를 만듬 1000개만듬
y_data = x_data * 0.1 + np.random.normal(0.3,0.03, 1000)
In [41]:
plt.plot(x_data,y_data,'ro',alpha=0.5)
plt.show()
In [45]:
temp = np.linspace(0,1000,8)
In [46]:
temp = np.floor(temp)
In [47]:
print(temp)
In [ ]:
y_data =