In [1]:
import tensorflow as tf
print(tf.__version__)
In [2]:
a = tf.placeholder("float")
b = tf.placeholder("float")
y = tf.multiply(a,b)
In [3]:
sess = tf.Session()
print(sess.run(y, feed_dict={a:3, b:3}))
sess.close()
In [4]:
aa = tf.placeholder(dtype=tf.float32)
bb = tf.placeholder(dtype=tf.float32)
yy = tf.multiply(aa,bb)
sess = tf.Session()
print(sess.run(yy, feed_dict={aa:3, bb:5}))
sess.close()
In [5]:
a2 = tf.placeholder(dtype=tf.float32)
b2 = tf.placeholder(dtype=tf.float32)
y2 = tf.matmul(a2,b2)
sess = tf.Session()
print(sess.run(y2,feed_dict={a2: [[1,2]], b2:[[3],[1]]}))
sess.close()
In [6]:
print(tf.Session().run(tf.shape([[1],[2]])))
In [7]:
arr = [[1,2],
[3,4]]
print(arr)
In [8]:
w = tf.Variable(arr, dtype=tf.float32)
x = tf.Variable(arr, dtype=tf.float32)
In [9]:
sess = tf.Session()
sess.run(tf.global_variables_initializer())
print(sess.run(tf.matmul(w,x)))
sess.close()
In [10]:
p1 = tf.placeholder(dtype=tf.float32)
p2 = tf.placeholder(dtype=tf.float32)
sess = tf.Session()
print(sess.run(tf.matmul(p1,p2), feed_dict={p1: arr, p2: arr}))
sess.close()
In [38]:
a = 3
b = 4
c = -5
d = 0.3
e = 0.7
In [39]:
def dualOperation(operation, a, b):
sess = tf.Session()
print(sess.run(operation, feed_dict={x:a,y:b}))
sess.close()
In [40]:
def singleOperation(operation, a):
sess = tf.Session()
print(sess.run(operation, feed_dict={x: a}))
sess.close()
In [24]:
x = tf.placeholder(dtype=tf.float32)
y = tf.placeholder(dtype=tf.float32)
In [25]:
dualOperation(tf.add(x,y),a,b)
In [26]:
dualOperation(tf.subtract(x,y),a,b)
In [27]:
dualOperation(tf.multiply(x,y),a,b)
In [28]:
dualOperation(tf.div(x,y),a,b)
In [29]:
dualOperation(tf.divide(x,b),a,b)
In [30]:
dualOperation(tf.mod(x,y),a,b)
In [31]:
singleOperation(tf.abs(x),c)
In [32]:
singleOperation(tf.negative(x),a)
In [33]:
singleOperation(tf.sign(x),a)
In [34]:
singleOperation(tf.sign(x),c)
In [37]:
singleOperation(tf.reciprocal(x),a)
In [41]:
singleOperation(tf.square(x),a)
In [42]:
singleOperation(tf.round(x),d)
In [43]:
singleOperation(tf.round(x),e)
In [44]:
singleOperation(tf.sqrt(x),b)
In [45]:
singleOperation(tf.sqrt(x),3)
In [47]:
dualOperation(tf.pow(x,y),4,2)
In [49]:
dualOperation(tf.maximum(x,y),2,3)
In [ ]: