In [1]:
import tensorflow as tf
print(tf.__version__)
In [2]:
"""
아래는
1 1 1
1 1 1
행렬이다.
"""
x = [[1,1,1],
[1,1,1]]
y = [[[ 1, 2, 3],
[40,20,30]],
[[4,70,6],
[7, 8,9]]]
In [3]:
sum = tf.reduce_sum(x)
sum1 = tf.reduce_sum(x, reduction_indices = 1)
sum2 = tf.reduce_sum(x, reduction_indices = 0)
sum3 = tf.reduce_sum(x, reduction_indices = 1, keep_dims = True)
sum4 = tf.reduce_sum(x, reduction_indices = [0, 1])
sum5 = tf.reduce_sum(x, reduction_indices = [1, 0])
In [4]:
sess = tf.Session()
print(sess.run(sum))
print(sess.run(sum1))
print(sess.run(sum2))
print(sess.run(sum3))
print(sess.run(sum4))
print(sess.run(sum5))
In [5]:
#행렬에서 가장큰 값이 있는 인덱스를 리턴한다.
#벡터면 그냥 0써주면 된다.
sess.run(tf.arg_max(y,2))
Out[5]:
In [27]:
x = tf.Variable(initial_value=0, name='x')
In [28]:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(10):
x = x + 1
print(sess.run(x))
In [29]:
with tf.Session() as sess:
tf.assign(x, 1)
sess.run(tf.global_variables_initializer())
for i in range(10):
# tf.assign(x, 4)
print(sess.run(x))
In [10]:
help(tf.assign)
In [ ]: