In [1]:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
%matplotlib inline
In [37]:
X = tf.placeholder(dtype=tf.float32, shape=[None, 784])
Y = tf.placeholder(dtype=tf.float32, shape=[None, 10])
In [38]:
W1 = tf.Variable(tf.random_normal(shape=[784, 256], stddev=0.01), name="w1val")
L1 = tf.nn.relu(tf.matmul(X, W1))
In [39]:
W2 = tf.Variable(tf.random_normal(shape=[256, 256], stddev=0.01), name="w2val")
L2 = tf.nn.relu(tf.matmul(L1, W2))
In [40]:
W3 = tf.Variable(tf.random_normal([256, 10], stddev=0.01), name="w3val")
model = tf.matmul(L2, W3)
In [41]:
# param_list = [W1, W2, W3]
saver = tf.train.Saver({"w1val":W1, "w2val":W2, "w3val":W3})
In [47]:
im = Image.open("./temp.png")
In [48]:
im
Out[48]:
In [49]:
img2 = im.resize((28,28))
b = img2.tobytes("raw","A")
ll = [i/255 for i in b ]
In [50]:
len(ll)
Out[50]:
In [51]:
ll = np.array(ll)
ll.shape
Out[51]:
In [53]:
with tf.Session() as sess:
# sess.run(tf.global_variables_initializer()) #변수를 초기화 해서 세팅이되면 파일에서 restore시 에러발생함
saver.restore(sess, "./chkp_save2/mnist")
predict = sess.run([model], feed_dict={X:ll})
print(predict)
predict = np.array(predict)
print("shape:", predict.shape)
print("result : ",np.argmax(predict[0], axis=1))
In [54]:
img2
Out[54]:
In [55]:
im
Out[55]:
In [57]:
im.width
Out[57]:
In [58]:
im.height
Out[58]:
In [59]:
newImg = Image.frombytes(data=im.tobytes('raw','RGBA'),size=(250,250), mode='RGBA')
In [60]:
newImg
Out[60]:
In [62]:
help(im.tostring)
In [72]:
with open('./temp.png','rb') as f:
str = f.read()
# print(str)
li = [i for i in str]
print(len(li))
In [80]:
250 * 250 * 4
Out[80]:
In [74]:
data=im.tobytes('raw','RGBA')
In [77]:
len([i for i in data])
Out[77]:
In [78]:
len(data)
Out[78]:
In [91]:
np.array([i for i in data])[:10]
Out[91]:
In [102]:
hex_list = [hex(i) for i in data]
In [103]:
len(hex_list)
Out[103]:
In [104]:
hex_list[1]
Out[104]:
In [106]:
ba = bytearray(h.decode("hex") for h in hex_list)
In [115]:
br = bytearray([i for i in data])
In [123]:
type(data)
Out[123]:
In [124]:
import array
In [127]:
by_str = array.array('B', [17, 24, 121, 1, 12, 222, 34, 76]).tostring()
In [128]:
len(by_str)
Out[128]:
In [129]:
bt_str = array.array('B', [i for i in data]).tostring()
In [131]:
len(bt_str)
Out[131]:
In [132]:
newImg3 = Image.frombytes(data=bt_str,size=(250,250), mode='RGBA')
In [133]:
newImg3
Out[133]:
In [ ]: