In [1]:
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
In [2]:
X = [1,2,3]
Y = [1,2,3]
W = tf.placeholder(tf.float32)
hypothesis = W*X
cost = tf.reduce_mean(tf.square(hypothesis - Y))
In [3]:
sess = tf.Session()
sess.run(tf.global_variables_initializer())
W_val = []
cost_val = []
for i in range(-30, 50):
feed_W = i * 0.1
curr_cost, curr_W = sess.run([cost, W], feed_dict={W: feed_W})
W_val.append(curr_W)
cost_val.append(curr_cost)
In [4]:
plt.plot(W_val, cost_val)
Out[4]:
In [5]:
plt.show()
In [6]:
print("hello")
In [ ]:
In [ ]:
In [ ]:
In [ ]: