In [1]:
import numpy as np
print(np.__version__)
import matplotlib.pyplot as plt
%matplotlib inline
In [2]:
vector = np.array([1,2,3,4,5])
In [3]:
print(vector)
print(vector.shape)
In [4]:
vector2 = np.arange(1,6)
In [5]:
print(vector2)
print(vector2.shape)
In [6]:
matrix = np.array([[1,2,3],[4,5,6]])
print(matrix)
print(matrix.shape)
In [7]:
np.random.seed(200)
In [8]:
np.random.normal(0,1,(3,5))
Out[8]:
In [9]:
data = np.random.normal(0,1,10000)
In [10]:
print(data.shape)
In [11]:
plt.hist(data, bins=30,histtype='bar',color='red', alpha=0.5)
plt.show()
In [12]:
data2 = np.random.normal(0, 2, 10000)
plt.hist([data, data2], bins=50, histtype='stepfilled', color=['skyblue', 'orange'], alpha=0.7,
label=['sigma=1', 'sigma=2'])
plt.legend(loc=0)
plt.show()
In [14]:
data = np.random.normal(0,2,1000)
In [26]:
plt.hist(data,bins=50,color="crimson")
plt.show()
In [40]:
colors = ['red',
'crimson',
'tomato',
'wheat',
'yellowgreen',
'orange',
'navy',
'chartreuse',
'green'
]
In [41]:
for i in colors:
plt.hist(data,bins=50, color=i)
plt.show()
plt.close()
In [42]:
numPts = 2000
In [43]:
aX = np.random.normal(1,1,numPts)
aY = np.random.normal(1,1,numPts)
In [51]:
plt.scatter(aX,aY, color="blue", alpha=0.3)
plt.show()
plt.close()
In [52]:
b = np.random.normal(5,2,(numPts,2))
In [53]:
plt.scatter(b[:,0],b[:,1], color="red", alpha=0.3)
plt.show()
plt.close()
In [57]:
plt.figure(figsize=(6,6))
plt.scatter(aX, aY, color='r', s=2, alpha=0.3)
plt.scatter(b[:,0], b[:,1], color='b', s=2, alpha=0.3)
plt.show()
In [58]:
plt.figure(figsize=(6,6))
plt.scatter(aX, aY, color='k', s=2, alpha=0.3)
plt.scatter(b[:,0], b[:,1], color='k', s=2, alpha=0.3)
ax = plt.gca()
circle1 = plt.Circle((1, 1), 1*2, color='r', lw=5, fill=False)
circle2 = plt.Circle((5, 5), 2*2, color='b', lw=5, fill=False)
ax.add_artist(circle1)
ax.add_artist(circle2)
plt.show()
In [ ]: