In [2]:
import sys
sys.path.append("..")
import splitwavepy as s
import scipy
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from scipy import stats
In [3]:
p = s.Pair()
In [4]:
p.split(30,8)
p.plot()
In [5]:
scipy.stats.spearmanr(p.data[0],p.data[1])
Out[5]:
In [6]:
scipy.stats.spearmanr(p.data[1],p.data[1])
Out[6]:
In [14]:
w = signal.ricker(500,12)
# signal.minimum_phase?
In [15]:
plt.plot(w)
plt.show()
In [17]:
m = signal.minimum_phase(w)
In [18]:
plt.plot(m)
plt.show()
In [21]:
signal.resample?
In [23]:
M = np.fft.fft(m)
In [25]:
plt.plot(M)
plt.show(M.imag)
In [34]:
fig, ax = plt.subplots(nrows=1,ncols=4)
W = np.fft.fft(w)
ax[0].plot(w)
ax[0].set_title('Time domain Signal')
ax[1].plot(np.abs(W)**2)
ax[1].set_title('Power Spectrum')
ax[2].plot(np.abs(W))
ax[2].set_title('Amplitude Spectrum')
ax[3].plot(np.angle(W))
ax[3].set_title('Phase Spectrum')
plt.show()
In [33]:
np.fft?
In [36]:
signal.wiener?
In [48]:
def test(*args,**kwargs):
for x in kwargs:
print(kwargs[x])
In [49]:
test(z='monkey')
In [41]:
A = {'monkey':'willy'}
In [42]:
A
Out[42]:
In [45]:
A?
In [ ]: