Fitting Models Exercise 2

Imports


In [3]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as opt

Fitting a decaying oscillation

For this problem you are given a raw dataset in the file decay_osc.npz. This file contains three arrays:

  • tdata: an array of time values
  • ydata: an array of y values
  • dy: the absolute uncertainties (standard deviations) in y

Your job is to fit the following model to this data:

$$ y(t) = A e^{-\lambda t} \cos{\omega t + \delta} $$

First, import the data using NumPy and make an appropriately styled error bar plot of the raw data.


In [83]:
# YOUR CODE HERE
data = np.load('decay_osc.npz')
time=data['tdata']
y=data['ydata']
dy=data['dy']

plt.errorbar(time, y, dy,
             fmt='.k', ecolor='lightgray')
plt.xlabel('x')
plt.ylabel('y');
plt.plot(time,y)


Out[83]:
[<matplotlib.lines.Line2D at 0x7fddaa7dcd68>]

In [ ]:
assert True # leave this to grade the data import and raw data plot

Now, using curve_fit to fit this model and determine the estimates and uncertainties for the parameters:

  • Print the parameters estimates and uncertainties.
  • Plot the raw and best fit model.
  • You will likely have to pass an initial guess to curve_fit to get a good fit.
  • Treat the uncertainties in $y$ as absolute errors by passing absolute_sigma=True.

In [147]:
# YOUR CODE HERE
def ymodel(A,lamda,w,sigma,time):
    return A*np.exp(-lamda*time)*np.cos(w*time)+sigma

z,w=opt.curve_fit(ymodel,time,y,p0=[.1,7,-1,.1],sigma=dy,absolute_sigma=True)
plt.plot(z)
plt.plot(time,y)


/usr/local/lib/python3.4/dist-packages/IPython/kernel/__main__.py:3: RuntimeWarning: overflow encountered in exp
  app.launch_new_instance()
Out[147]:
[<matplotlib.lines.Line2D at 0x7fdda8fcd898>]

In [126]:
assert True # leave this cell for grading the fit; should include a plot and printout of the parameters+errors

In [ ]: