In [11]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as opt
from IPython.html.widgets import interact
For this problem we are going to work with the following model:
$$ y_{model}(x) = a x^2 + b x + c $$The true values of the model parameters are as follows:
In [2]:
a_true = 0.5
b_true = 2.0
c_true = -4.0
First, generate a dataset using this model using these parameters and the following characteristics:
size argument of np.random.normal).After you generate the data, make a plot of the raw data (use points).
In [43]:
# YOUR CODE HERE
xdata=np.linspace(-5,5,30)
N=30
dy=2.0
def ymodel(a,b,c):
return a*x**2+b*x+c
ydata = a_true*x**2 + b_true * x + c_true + np.random.normal(0.0, dy, size=N)
plt.errorbar(xdata, ydata, dy,
fmt='.k', ecolor='lightgray')
plt.xlabel('x')
plt.ylabel('y');
In [ ]:
assert True # leave this cell for grading the raw data generation and plot
Now fit the model to the dataset to recover estimates for the model's parameters:
In [40]:
# YOUR CODE HERE
def chi2(theta, x, y, dy):
# theta = [b, m]
return np.sum(((y - theta[0] - theta[1] * x) / dy) ** 2)
def manual_fit(a, b, c):
modely = a*xdata**2 + b*xdata +c
plt.plot(xdata, modely)
plt.errorbar(xdata, ydata, dy,
fmt='.k', ecolor='lightgray')
plt.xlabel('x')
plt.ylabel('y')
plt.text(1, 15, 'a={0:.2f}'.format(a))
plt.text(1, 12.5, 'b={0:.2f}'.format(b))
plt.text(1, 10, 'c={0:.2f}'.format(c))
plt.text(1, 8.0, '$\chi^2$={0:.2f}'.format(chi2([a,b,c],xdata,ydata, dy)))
In [42]:
interact(manual_fit, a=(-3.0,3.0,0.01), b=(0.0,4.0,0.01),c=(-5,5,0.1));
In [49]:
def deviations(theta, x, y, dy):
return (y - theta[0] - theta[1] * x) / dy
result = opt.leastsq(deviations, theta_guess, args=(xdata, ydata, dy), full_output=True)
theta_best = result[0]
theta_cov = result[1]
theta_mov = result[2]
print('a = {0:.3f} +/- {1:.3f}'.format(theta_best[0], np.sqrt(theta_cov[0,0])))
print('b = {0:.3f} +/- {1:.3f}'.format(theta_best[1], np.sqrt(theta_cov[1,1])))
print('c = {0:.3f} +/- {1:.3f}'.format(theta_best[2], np.sqrt(theta_cov[2,2])))
In [ ]:
assert True # leave this cell for grading the fit; should include a plot and printout of the parameters+errors