the number of rows is 10116
The number of students is 3134
Finish reading data
the number of rows is 2532
The number of students is 786
Finish reading data
train model being set
num_steps: 1218
len(output): 1218
weight: <tf.Variable 'model/weights:0' shape=(200, 124) dtype=float32_ref>
outputs[0]: Tensor("model/Squeeze:0", shape=(100, 200), dtype=float32)
logits: Tensor("model/stack:0", shape=(1218, 100, 124), dtype=float32)
logits selected: Tensor("model/Gather:0", shape=(?,), dtype=float32)
prediction: Tensor("model/Sigmoid:0", shape=(?,), dtype=float32)
pred[0]: Tensor("model/strided_slice:0", shape=(), dtype=float32)
target_correctness: Tensor("model/Placeholder_3:0", shape=(?,), dtype=float32)
target_correctness[0]: Tensor("model/strided_slice_1:0", shape=(), dtype=float32)
loss: Tensor("model/logistic_loss:0", shape=(?,), dtype=float32)
loss[0]: Tensor("model/strided_slice_2:0", shape=(), dtype=float32)
cost: Tensor("model/Sum:0", shape=(), dtype=float32)
test model being set
num_steps: 1061
len(output): 1061
weight: <tf.Variable 'model/weights:0' shape=(200, 124) dtype=float32_ref>
outputs[0]: Tensor("model_1/Squeeze:0", shape=(100, 200), dtype=float32)
logits: Tensor("model_1/stack:0", shape=(1061, 100, 124), dtype=float32)
logits selected: Tensor("model_1/Gather:0", shape=(?,), dtype=float32)
prediction: Tensor("model_1/Sigmoid:0", shape=(?,), dtype=float32)
pred[0]: Tensor("model_1/strided_slice:0", shape=(), dtype=float32)
target_correctness: Tensor("model_1/Placeholder_3:0", shape=(?,), dtype=float32)
target_correctness[0]: Tensor("model_1/strided_slice_1:0", shape=(), dtype=float32)
loss: Tensor("model_1/logistic_loss:0", shape=(?,), dtype=float32)
loss[0]: Tensor("model_1/strided_slice_2:0", shape=(), dtype=float32)
cost: Tensor("model_1/Sum:0", shape=(), dtype=float32)
initialize global variables
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 1 Train Metrics:
rmse: 0.466 auc: 0.620 r2: 0.039
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 2 Train Metrics:
rmse: 0.434 auc: 0.739 r2: 0.165
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 3 Train Metrics:
rmse: 0.412 auc: 0.785 r2: 0.247
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 4 Train Metrics:
rmse: 0.407 auc: 0.796 r2: 0.267
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 5 Train Metrics:
rmse: 0.402 auc: 0.805 r2: 0.284
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 5 Test Metrics:
rmse: 0.398 auc: 0.810 r2: 0.297
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 6 Train Metrics:
rmse: 0.400 auc: 0.811 r2: 0.293
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 7 Train Metrics:
rmse: 0.397 auc: 0.815 r2: 0.301
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 8 Train Metrics:
rmse: 0.395 auc: 0.819 r2: 0.309
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 9 Train Metrics:
rmse: 0.393 auc: 0.823 r2: 0.315
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 10 Train Metrics:
rmse: 0.392 auc: 0.826 r2: 0.321
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 10 Test Metrics:
rmse: 0.396 auc: 0.815 r2: 0.303
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 11 Train Metrics:
rmse: 0.389 auc: 0.831 r2: 0.329
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 12 Train Metrics:
rmse: 0.388 auc: 0.834 r2: 0.335
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 13 Train Metrics:
rmse: 0.386 auc: 0.837 r2: 0.342
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 14 Train Metrics:
rmse: 0.384 auc: 0.842 r2: 0.349
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 15 Train Metrics:
rmse: 0.381 auc: 0.847 r2: 0.359
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 15 Test Metrics:
rmse: 0.402 auc: 0.805 r2: 0.282
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 16 Train Metrics:
rmse: 0.379 auc: 0.851 r2: 0.366
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 17 Train Metrics:
rmse: 0.377 auc: 0.854 r2: 0.371
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 18 Train Metrics:
rmse: 0.375 auc: 0.856 r2: 0.377
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 19 Train Metrics:
rmse: 0.373 auc: 0.859 r2: 0.384
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 20 Train Metrics:
rmse: 0.371 auc: 0.863 r2: 0.391
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 20 Test Metrics:
rmse: 0.410 auc: 0.798 r2: 0.256
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 21 Train Metrics:
rmse: 0.369 auc: 0.866 r2: 0.396
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 22 Train Metrics:
rmse: 0.367 auc: 0.868 r2: 0.402
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 23 Train Metrics:
rmse: 0.365 auc: 0.872 r2: 0.409
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 24 Train Metrics:
rmse: 0.363 auc: 0.875 r2: 0.417
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 25 Train Metrics:
rmse: 0.361 auc: 0.878 r2: 0.422
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 25 Test Metrics:
rmse: 0.416 auc: 0.792 r2: 0.231
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 26 Train Metrics:
rmse: 0.360 auc: 0.880 r2: 0.426
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 27 Train Metrics:
rmse: 0.358 auc: 0.882 r2: 0.432
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 28 Train Metrics:
rmse: 0.357 auc: 0.883 r2: 0.436
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 29 Train Metrics:
rmse: 0.356 auc: 0.886 r2: 0.441
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 30 Train Metrics:
rmse: 0.355 auc: 0.887 r2: 0.443
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 30 Test Metrics:
rmse: 0.418 auc: 0.789 r2: 0.226
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 31 Train Metrics:
rmse: 0.353 auc: 0.889 r2: 0.448
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 32 Train Metrics:
rmse: 0.353 auc: 0.890 r2: 0.450
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 33 Train Metrics:
rmse: 0.350 auc: 0.893 r2: 0.458
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 34 Train Metrics:
rmse: 0.348 auc: 0.895 r2: 0.464
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 35 Train Metrics:
rmse: 0.349 auc: 0.895 r2: 0.462
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 35 Test Metrics:
rmse: 0.423 auc: 0.785 r2: 0.207
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 36 Train Metrics:
rmse: 0.348 auc: 0.896 r2: 0.465
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 37 Train Metrics:
rmse: 0.346 auc: 0.897 r2: 0.469
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 38 Train Metrics:
rmse: 0.346 auc: 0.898 r2: 0.471
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 39 Train Metrics:
rmse: 0.345 auc: 0.899 r2: 0.473
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 40 Train Metrics:
rmse: 0.344 auc: 0.900 r2: 0.476
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 40 Test Metrics:
rmse: 0.427 auc: 0.780 r2: 0.191
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 41 Train Metrics:
rmse: 0.342 auc: 0.902 r2: 0.481
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 42 Train Metrics:
rmse: 0.341 auc: 0.904 r2: 0.485
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 43 Train Metrics:
rmse: 0.340 auc: 0.905 r2: 0.488
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 44 Train Metrics:
rmse: 0.338 auc: 0.906 r2: 0.494
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 45 Train Metrics:
rmse: 0.336 auc: 0.909 r2: 0.499
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 45 Test Metrics:
rmse: 0.430 auc: 0.781 r2: 0.179
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 46 Train Metrics:
rmse: 0.336 auc: 0.910 r2: 0.502
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 47 Train Metrics:
rmse: 0.337 auc: 0.908 r2: 0.498
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 48 Train Metrics:
rmse: 0.336 auc: 0.910 r2: 0.502
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 49 Train Metrics:
rmse: 0.334 auc: 0.911 r2: 0.507
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 50 Train Metrics:
rmse: 0.334 auc: 0.912 r2: 0.507
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 50 Test Metrics:
rmse: 0.431 auc: 0.776 r2: 0.175
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 51 Train Metrics:
rmse: 0.334 auc: 0.911 r2: 0.506
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 52 Train Metrics:
rmse: 0.332 auc: 0.913 r2: 0.511
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 53 Train Metrics:
rmse: 0.331 auc: 0.915 r2: 0.516
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 54 Train Metrics:
rmse: 0.328 auc: 0.917 r2: 0.523
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 55 Train Metrics:
rmse: 0.329 auc: 0.916 r2: 0.520
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 55 Test Metrics:
rmse: 0.433 auc: 0.779 r2: 0.168
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 56 Train Metrics:
rmse: 0.329 auc: 0.917 r2: 0.522
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 57 Train Metrics:
rmse: 0.331 auc: 0.915 r2: 0.516
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 58 Train Metrics:
rmse: 0.338 auc: 0.907 r2: 0.494
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 59 Train Metrics:
rmse: 0.333 auc: 0.912 r2: 0.509
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 60 Train Metrics:
rmse: 0.330 auc: 0.916 r2: 0.519
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 60 Test Metrics:
rmse: 0.433 auc: 0.778 r2: 0.167
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 61 Train Metrics:
rmse: 0.329 auc: 0.916 r2: 0.520
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 62 Train Metrics:
rmse: 0.328 auc: 0.917 r2: 0.524
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 63 Train Metrics:
rmse: 0.325 auc: 0.920 r2: 0.532
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 64 Train Metrics:
rmse: 0.325 auc: 0.921 r2: 0.534
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 65 Train Metrics:
rmse: 0.325 auc: 0.921 r2: 0.533
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 65 Test Metrics:
rmse: 0.434 auc: 0.778 r2: 0.166
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 66 Train Metrics:
rmse: 0.323 auc: 0.923 r2: 0.539
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 67 Train Metrics:
rmse: 0.322 auc: 0.924 r2: 0.542
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 68 Train Metrics:
rmse: 0.321 auc: 0.924 r2: 0.544
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 69 Train Metrics:
rmse: 0.322 auc: 0.923 r2: 0.541
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 70 Train Metrics:
rmse: 0.320 auc: 0.925 r2: 0.547
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 70 Test Metrics:
rmse: 0.439 auc: 0.773 r2: 0.147
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 71 Train Metrics:
rmse: 0.321 auc: 0.924 r2: 0.544
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 72 Train Metrics:
rmse: 0.322 auc: 0.923 r2: 0.542
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 73 Train Metrics:
rmse: 0.320 auc: 0.925 r2: 0.546
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 74 Train Metrics:
rmse: 0.320 auc: 0.925 r2: 0.546
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 75 Train Metrics:
rmse: 0.319 auc: 0.926 r2: 0.550
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 75 Test Metrics:
rmse: 0.436 auc: 0.777 r2: 0.155
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 76 Train Metrics:
rmse: 0.318 auc: 0.927 r2: 0.552
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 77 Train Metrics:
rmse: 0.317 auc: 0.928 r2: 0.555
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 78 Train Metrics:
rmse: 0.317 auc: 0.927 r2: 0.554
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 79 Train Metrics:
rmse: 0.317 auc: 0.928 r2: 0.555
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 80 Train Metrics:
rmse: 0.315 auc: 0.930 r2: 0.561
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 80 Test Metrics:
rmse: 0.441 auc: 0.773 r2: 0.138
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 81 Train Metrics:
rmse: 0.313 auc: 0.931 r2: 0.565
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 82 Train Metrics:
rmse: 0.312 auc: 0.933 r2: 0.570
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 83 Train Metrics:
rmse: 0.311 auc: 0.933 r2: 0.571
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 84 Train Metrics:
rmse: 0.313 auc: 0.932 r2: 0.568
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 85 Train Metrics:
rmse: 0.313 auc: 0.932 r2: 0.567
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 85 Test Metrics:
rmse: 0.443 auc: 0.773 r2: 0.129
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 86 Train Metrics:
rmse: 0.311 auc: 0.933 r2: 0.573
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 87 Train Metrics:
rmse: 0.311 auc: 0.933 r2: 0.572
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 88 Train Metrics:
rmse: 0.310 auc: 0.934 r2: 0.574
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 89 Train Metrics:
rmse: 0.309 auc: 0.935 r2: 0.577
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 90 Train Metrics:
rmse: 0.309 auc: 0.935 r2: 0.578
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 90 Test Metrics:
rmse: 0.443 auc: 0.772 r2: 0.130
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 91 Train Metrics:
rmse: 0.310 auc: 0.934 r2: 0.576
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 92 Train Metrics:
rmse: 0.312 auc: 0.932 r2: 0.569
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 93 Train Metrics:
rmse: 0.311 auc: 0.933 r2: 0.572
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 94 Train Metrics:
rmse: 0.311 auc: 0.934 r2: 0.573
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 95 Train Metrics:
rmse: 0.309 auc: 0.935 r2: 0.576
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 95 Test Metrics:
rmse: 0.441 auc: 0.773 r2: 0.136
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 96 Train Metrics:
rmse: 0.309 auc: 0.935 r2: 0.576
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 97 Train Metrics:
rmse: 0.308 auc: 0.936 r2: 0.579
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 98 Train Metrics:
rmse: 0.305 auc: 0.938 r2: 0.588
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 99 Train Metrics:
rmse: 0.304 auc: 0.939 r2: 0.590
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 100 Train Metrics:
rmse: 0.304 auc: 0.939 r2: 0.591
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 100 Test Metrics:
rmse: 0.445 auc: 0.772 r2: 0.120
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 101 Train Metrics:
rmse: 0.302 auc: 0.940 r2: 0.596
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 102 Train Metrics:
rmse: 0.303 auc: 0.940 r2: 0.594
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 103 Train Metrics:
rmse: 0.299 auc: 0.942 r2: 0.603
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 104 Train Metrics:
rmse: 0.300 auc: 0.942 r2: 0.601
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 105 Train Metrics:
rmse: 0.300 auc: 0.942 r2: 0.601
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 105 Test Metrics:
rmse: 0.444 auc: 0.775 r2: 0.127
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 106 Train Metrics:
rmse: 0.300 auc: 0.942 r2: 0.603
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 107 Train Metrics:
rmse: 0.298 auc: 0.943 r2: 0.606
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 108 Train Metrics:
rmse: 0.299 auc: 0.943 r2: 0.606
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 109 Train Metrics:
rmse: 0.298 auc: 0.943 r2: 0.606
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 110 Train Metrics:
rmse: 0.297 auc: 0.944 r2: 0.609
Save variables to disk
**********
Start to test model ....
len(actual_labels): 58674
len(pred_lables): 58674
sum: 58674
Epoch: 110 Test Metrics:
rmse: 0.448 auc: 0.769 r2: 0.109
**********
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 111 Train Metrics:
rmse: 0.299 auc: 0.942 r2: 0.603
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 112 Train Metrics:
rmse: 0.303 auc: 0.940 r2: 0.594
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 113 Train Metrics:
rmse: 0.305 auc: 0.939 r2: 0.589
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
Epoch: 114 Train Metrics:
rmse: 0.309 auc: 0.935 r2: 0.577
num_epochs: 150
len(actual_labels): 254280
len(pred_lables): 254280
sum: 254280
------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-13-805d32a6899f> in <module>()
3 a_run.setDataPath('data/0910_b_train.csv', False)
4 a_run.setDataPath('data/0910_b_test.csv', True)
----> 5 a_run.run()
<ipython-input-11-c109fcf9cc30> in run(self)
204 for i in range(num_epochs):
205 print('num_epochs: ', num_epochs)
--> 206 rmse, auc, r2 = self.runEpoch(sess, train_students, True, verbose = True)
207 print("Epoch: %d Train Metrics:\n rmse: %.3f \t auc: %.3f \t r2: %.3f \n" % (i + 1, rmse, auc, r2))
208
<ipython-input-11-c109fcf9cc30> in runEpoch(self, session, students, is_training, verbose)
94 print('len(pred_lables): ', len(pred_labels))
95 print('sum: ', tmpsum)
---> 96 rmse = sqrt(mean_squared_error(actual_labels, pred_labels))
97 fpr, tpr, thresholds = metrics.roc_curve(actual_labels, pred_labels, pos_label = 1)
98 auc = metrics.auc(fpr, tpr)
~/anaconda3/envs/rnn_practice_py3/lib/python3.6/site-packages/sklearn/metrics/regression.py in mean_squared_error(y_true, y_pred, sample_weight, multioutput)
229 """
230 y_type, y_true, y_pred, multioutput = _check_reg_targets(
--> 231 y_true, y_pred, multioutput)
232 output_errors = np.average((y_true - y_pred) ** 2, axis=0,
233 weights=sample_weight)
~/anaconda3/envs/rnn_practice_py3/lib/python3.6/site-packages/sklearn/metrics/regression.py in _check_reg_targets(y_true, y_pred, multioutput)
74 check_consistent_length(y_true, y_pred)
75 y_true = check_array(y_true, ensure_2d=False)
---> 76 y_pred = check_array(y_pred, ensure_2d=False)
77
78 if y_true.ndim == 1:
~/anaconda3/envs/rnn_practice_py3/lib/python3.6/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
405 % (array.ndim, estimator_name))
406 if force_all_finite:
--> 407 _assert_all_finite(array)
408
409 shape_repr = _shape_repr(array.shape)
~/anaconda3/envs/rnn_practice_py3/lib/python3.6/site-packages/sklearn/utils/validation.py in _assert_all_finite(X)
56 and not np.isfinite(X).all()):
57 raise ValueError("Input contains NaN, infinity"
---> 58 " or a value too large for %r." % X.dtype)
59
60
ValueError: Input contains NaN, infinity or a value too large for dtype('float32').