In [18]:
x1 = np.random.randint(1,6,1000)
x2 = np.random.randint(1,6,1000)
In [21]:
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
mse = mean_squared_error(x1, x2)
mae = mean_absolute_error(x1, x2)
r2 = r2_score(x1, x2)
print("mse : ", mse ,
"\nmae : ", mae,
"\n r2 : ", r2)
In [46]:
mse_list = []
mae_list = []
r2_list = []
for _ in range(5):
x1 = np.random.randint(1,6,1000)
x2 = np.random.randint(1,6,1000)
mse = mean_squared_error(x1, x2)
mae = mean_absolute_error(x1, x2)
r2 = r2_score(x1, x2)
mse_list.append(round(mse, 4))
mae_list.append(round(mae, 4))
r2_list.append(round(r2, 4))
print("mse_mean : ", np.mean(mse_list))
print("mse_list : ", mse_list)
print('---------------------')
print("mae_mean : ", np.mean(mae_list))
print("mae_list : ", mae_list)
print('---------------------')
print("r2_mean : ", np.mean(r2_list))
print("r2_list : ", r2_list)
In [ ]: