In [36]:
%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np
In [37]:
from IPython.html.widgets import interact
Write a function char_probs that takes a string and computes the probabilities of each character in the string:
In [38]:
def char_probs(s):
"""Find the probabilities of the unique characters in the string s.
Parameters
----------
s : str
A string of characters.
Returns
-------
probs : dict
A dictionary whose keys are the unique characters in s and whose values
are the probabilities of those characters.
"""
alphabet = 'abcdefghijklmnopqrstuvwxyz'
dic = {}
for i in alphabet:
if i in s:
dic[i] = s.count(i)/len(s)
return dic
In [39]:
test1 = char_probs('aaaa')
assert np.allclose(test1['a'], 1.0)
test2 = char_probs('aabb')
assert np.allclose(test2['a'], 0.5)
assert np.allclose(test2['b'], 0.5)
test3 = char_probs('abcd')
assert np.allclose(test3['a'], 0.25)
assert np.allclose(test3['b'], 0.25)
assert np.allclose(test3['c'], 0.25)
assert np.allclose(test3['d'], 0.25)
The entropy is a quantiative measure of the disorder of a probability distribution. It is used extensively in Physics, Statistics, Machine Learning, Computer Science and Information Science. Given a set of probabilities $P_i$, the entropy is defined as:
$$H = - \Sigma_i P_i \log_2(P_i)$$In this expression $\log_2$ is the base 2 log (np.log2), which is commonly used in information science. In Physics the natural log is often used in the definition of entropy.
Write a funtion entropy that computes the entropy of a probability distribution. The probability distribution will be passed as a Python dict: the values in the dict will be the probabilities.
To compute the entropy, you should:
dict to a Numpy array of probabilities.np.log2, etc.) to compute the entropy.for or while loops in your code.
In [40]:
def entropy(d):
"""Compute the entropy of a dict d whose values are probabilities."""
ps = np.array([d[x] for x in d])
H = -sum(ps*np.log2(ps))
return H
In [41]:
assert np.allclose(entropy({'a': 0.5, 'b': 0.5}), 1.0)
assert np.allclose(entropy({'a': 1.0}), 0.0)
Use IPython's interact function to create a user interface that allows you to type a string into a text box and see the entropy of the character probabilities of the string.
In [42]:
def calc(s):
print(entropy(char_probs(s)))
In [43]:
interact(calc,s='Your Text');
In [44]:
assert True # use this for grading the pi digits histogram