In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
sns.set_style('white')
In [2]:
from scipy.interpolate import griddata
In this example the values of a scalar field $f(x,y)$ are known at a very limited set of points in a square domain:
Create arrays x, y, f:
x should be a 1d array of the x coordinates on the boundary and the 1 interior point.y should be a 1d array of the y coordinates on the boundary and the 1 interior point.f should be a 1d array of the values of f at the corresponding x and y coordinates.You might find that np.hstack is helpful.
In [3]:
x = np.empty((1,),dtype=int)
x[0] = 0
for i in range(-4,5):
x = np.hstack((x,np.array((i,i))))
x = np.hstack((x,np.array([-5]*11)))
x = np.hstack((x,np.array([5]*11)))
In [4]:
y = np.empty((1,),dtype=int)
y[0]=0
y = np.hstack((y,np.array((5,-5)*9)))
for i in range(-5,6):
y = np.hstack((y,np.array((i))))
for i in range(-5,6):
y = np.hstack((y,np.array((i))))
In [5]:
f=np.zeros_like(y)
f[0]=1
The following plot should show the points on the boundary and the single point in the interior:
In [6]:
plt.scatter(x, y);
In [7]:
assert x.shape==(41,)
assert y.shape==(41,)
assert f.shape==(41,)
assert np.count_nonzero(f)==1
Use meshgrid and griddata to interpolate the function $f(x,y)$ on the entire square domain:
xnew and ynew should be 1d arrays with 100 points between $[-5,5]$.Xnew and Ynew should be 2d versions of xnew and ynew created by meshgrid.Fnew should be a 2d array with the interpolated values of $f(x,y)$ at the points (Xnew,Ynew).
In [8]:
xnew = np.linspace(-5, 5, 100)
ynew = np.linspace(-5, 5, 100)
Xnew, Ynew = np.meshgrid(xnew, ynew)
Fnew = griddata((x,y), f, (Xnew, Ynew), method='cubic', fill_value=0.0)
In [9]:
assert xnew.shape==(100,)
assert ynew.shape==(100,)
assert Xnew.shape==(100,100)
assert Ynew.shape==(100,100)
assert Fnew.shape==(100,100)
Plot the values of the interpolated scalar field using a contour plot. Customize your plot to make it effective and beautiful.
In [10]:
plt.contourf(Xnew,Ynew,Fnew,cmap='jet');
plt.colorbar(shrink=.8);
plt.xlabel('x value');
plt.ylabel('y value');
plt.title('Contour Plot of Interpolated Function');
In [11]:
assert True # leave this to grade the plot