In [1]:
import pandas as pd
import scipy as sp
import numpy as np

from abtools import ABtest, LognormalModel
from abtools.plotting import qqplot, ppplot

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')

In [2]:
data = pd.read_csv('data.csv').query('revenue > 0')

In [3]:
log_data = np.log(data.revenue)

In [14]:
m = LognormalModel(data['revenue'])

In [15]:
qqplot(log_data, np.log(m.sample_ppc(1000)))


Out[15]:
[<matplotlib.axes._subplots.AxesSubplot at 0x7f612057efd0>]

In [17]:
a = data.query('abgroup == "control"')['revenue']
b = data.query('abgroup == "test"')['revenue']

In [22]:
test = ABtest(LognormalModel, [a, b], 5000)

test.test_all()


ABtest for 2 groups
Out[22]:
<abtools.core.abtest.ABtest at 0x7f6120390710>

In [23]:
test.plot()



In [24]:
test.probabilities_df


Out[24]:
group1 group2 mean
group1 - 0.9754 21.8011425844
group2 0.0246 - 22.4173097151
mean 21.8011425844 22.4173097151 -

In [ ]: