In [1]:
import gensim
from gensim.models import Word2Vec, Doc2Vec
path = '../../Application/Word2VecModel/GoogleNews-vectors-negative300.bin'

In [2]:
# nlp.stanford.edu/data/glove.6B.zip (Wikipedia  + Gigaword 5, 400.000 words, vector_size = 50)
# https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/ (Google news, 3M words, vector_size=300)

model = Word2Vec.load_word2vec_format(path, binary=True)


---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-2-c8ca7cf3df27> in <module>()
      2 # https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/ (Google news, 3M words, vector_size=300)
      3 
----> 4 model = Word2Vec.load_word2vec_format(path, binary=True)

/Users/andreas/anaconda/lib/python2.7/site-packages/gensim/models/word2vec.pyc in load_word2vec_format(cls, fname, fvocab, binary, encoding, unicode_errors, limit, datatype)
   1209                             word.append(ch)
   1210                     word = utils.to_unicode(b''.join(word), encoding=encoding, errors=unicode_errors)
-> 1211                     weights = fromstring(fin.read(binary_len), dtype=REAL)
   1212                     add_word(word, weights)
   1213             else:

KeyboardInterrupt: 

In [3]:
try:
    print model["Why"]
except KeyError, e:
    print e


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-3-9e4b3f279450> in <module>()
      1 try:
----> 2     print model["Why"]
      3 except KeyError, e:
      4     print e

NameError: name 'model' is not defined

In [ ]:
from gensim.models.doc2vec import LabeledSentence
from gensim.models.doc2vec import Doc2Vec
model_d = Doc2Vec.load_word2vec_format(path, binary=True)

In [ ]:
sentence = LabeledSentence(["This", "is", "a", "test"], None)

In [ ]:
# model_d.infer_vector(["his", "dog"]) doesnt work (see https://github.com/RaRe-Technologies/gensim/issues/501 for more)
del model_d

In [ ]: