---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-37-dcc3cb13baba> in <module>()
----> 1 backward_selection(survive_index)
<ipython-input-36-438bce7b19a2> in backward_selection(survive_index)
7 print(index,"\n")
8 survive_index_copy = [i for i in survive_index if i!=index]
----> 9 perfs.append(cross_validation(X=X[:,survive_index_copy],Y=Y,epochs_=20,num_input_ = len(survive_index)-1))
10
11 max_index = np.argmax(perfs)
<ipython-input-27-e51115ec81ba> in cross_validation(X, Y, epochs_, num_input_)
3 preds = []
4 for train, test in LeaveOneOut().split(X, Y):
----> 5 model.fit(X,Y,epochs=epochs_,verbose=0)
6 # print(test)
7 probas_ = model.predict(X[test,:])
/home/wxk/anaconda2/envs/py3/lib/python3.6/site-packages/keras/models.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, **kwargs)
865 class_weight=class_weight,
866 sample_weight=sample_weight,
--> 867 initial_epoch=initial_epoch)
868
869 def evaluate(self, x, y, batch_size=32, verbose=1,
/home/wxk/anaconda2/envs/py3/lib/python3.6/site-packages/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs)
1593 initial_epoch=initial_epoch,
1594 steps_per_epoch=steps_per_epoch,
-> 1595 validation_steps=validation_steps)
1596
1597 def evaluate(self, x, y,
/home/wxk/anaconda2/envs/py3/lib/python3.6/site-packages/keras/engine/training.py in _fit_loop(self, f, ins, out_labels, batch_size, epochs, verbose, callbacks, val_f, val_ins, shuffle, callback_metrics, initial_epoch, steps_per_epoch, validation_steps)
1180 batch_logs['size'] = len(batch_ids)
1181 callbacks.on_batch_begin(batch_index, batch_logs)
-> 1182 outs = f(ins_batch)
1183 if not isinstance(outs, list):
1184 outs = [outs]
/home/wxk/anaconda2/envs/py3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py in __call__(self, inputs)
2268 updated = session.run(self.outputs + [self.updates_op],
2269 feed_dict=feed_dict,
-> 2270 **self.session_kwargs)
2271 return updated[:len(self.outputs)]
2272
/home/wxk/anaconda2/envs/py3/lib/python3.6/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
787 try:
788 result = self._run(None, fetches, feed_dict, options_ptr,
--> 789 run_metadata_ptr)
790 if run_metadata:
791 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/home/wxk/anaconda2/envs/py3/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
995 if final_fetches or final_targets:
996 results = self._do_run(handle, final_targets, final_fetches,
--> 997 feed_dict_string, options, run_metadata)
998 else:
999 results = []
/home/wxk/anaconda2/envs/py3/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1130 if handle is None:
1131 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1132 target_list, options, run_metadata)
1133 else:
1134 return self._do_call(_prun_fn, self._session, handle, feed_dict,
/home/wxk/anaconda2/envs/py3/lib/python3.6/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1137 def _do_call(self, fn, *args):
1138 try:
-> 1139 return fn(*args)
1140 except errors.OpError as e:
1141 message = compat.as_text(e.message)
/home/wxk/anaconda2/envs/py3/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1119 return tf_session.TF_Run(session, options,
1120 feed_dict, fetch_list, target_list,
-> 1121 status, run_metadata)
1122
1123 def _prun_fn(session, handle, feed_dict, fetch_list):
KeyboardInterrupt: