Softmax exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

This exercise is analogous to the SVM exercise. You will:

  • implement a fully-vectorized loss function for the Softmax classifier
  • implement the fully-vectorized expression for its analytic gradient
  • check your implementation with numerical gradient
  • use a validation set to tune the learning rate and regularization strength
  • optimize the loss function with SGD
  • visualize the final learned weights

In [1]:
import random
import numpy as np
from cs231n.data_utils import load_CIFAR10
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# for auto-reloading extenrnal modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2

In [2]:
def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000, num_dev=500):
  """
  Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
  it for the linear classifier. These are the same steps as we used for the
  SVM, but condensed to a single function.  
  """
  # Load the raw CIFAR-10 data
  cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
  X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
  
  # subsample the data
  mask = range(num_training, num_training + num_validation)
  X_val = X_train[mask]
  y_val = y_train[mask]
  mask = range(num_training)
  X_train = X_train[mask]
  y_train = y_train[mask]
  mask = range(num_test)
  X_test = X_test[mask]
  y_test = y_test[mask]
  mask = np.random.choice(num_training, num_dev, replace=False)
  X_dev = X_train[mask]
  y_dev = y_train[mask]
  
  # Preprocessing: reshape the image data into rows
  X_train = np.reshape(X_train, (X_train.shape[0], -1))
  X_val = np.reshape(X_val, (X_val.shape[0], -1))
  X_test = np.reshape(X_test, (X_test.shape[0], -1))
  X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))
  
  # Normalize the data: subtract the mean image
  mean_image = np.mean(X_train, axis = 0)
  X_train -= mean_image
  X_val -= mean_image
  X_test -= mean_image
  X_dev -= mean_image
  
  # add bias dimension and transform into columns
  X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
  X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
  X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
  X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
  
  return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev


# Invoke the above function to get our data.
X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev = get_CIFAR10_data()
print 'Train data shape: ', X_train.shape
print 'Train labels shape: ', y_train.shape
print 'Validation data shape: ', X_val.shape
print 'Validation labels shape: ', y_val.shape
print 'Test data shape: ', X_test.shape
print 'Test labels shape: ', y_test.shape
print 'dev data shape: ', X_dev.shape
print 'dev labels shape: ', y_dev.shape


Train data shape:  (49000, 3073)
Train labels shape:  (49000,)
Validation data shape:  (1000, 3073)
Validation labels shape:  (1000,)
Test data shape:  (1000, 3073)
Test labels shape:  (1000,)
dev data shape:  (500, 3073)
dev labels shape:  (500,)

Softmax Classifier

Your code for this section will all be written inside cs231n/classifiers/softmax.py.


In [30]:
# First implement the naive softmax loss function with nested loops.
# Open the file cs231n/classifiers/softmax.py and implement the
# softmax_loss_naive function.

from cs231n.classifiers.softmax import softmax_loss_naive
import time

# Generate a random softmax weight matrix and use it to compute the loss.
W = np.random.randn(3073, 10) * 0.0001
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0)

# As a rough sanity check, our loss should be something close to -log(0.1).
print 'loss: %f' % loss
print 'sanity check: %f' % (-np.log(0.1))


loss: 2.360216
sanity check: 2.302585

Inline Question 1:

Why do we expect our loss to be close to -log(0.1)? Explain briefly.**

Your answer: Fill this in


In [28]:
# Complete the implementation of softmax_loss_naive and implement a (naive)
# version of the gradient that uses nested loops.
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0)

# As we did for the SVM, use numeric gradient checking as a debugging tool.
# The numeric gradient should be close to the analytic gradient.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad, 10)

# similar to SVM case, do another gradient check with regularization
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 1e2)
f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 1e2)[0]
grad_numerical = grad_check_sparse(f, W, grad, 10)


numerical: -0.427978 analytic: -0.427978, relative error: 4.561479e-08
numerical: 0.378272 analytic: 0.378272, relative error: 1.526626e-07
numerical: 0.751673 analytic: 0.751673, relative error: 4.079517e-08
numerical: -0.099988 analytic: -0.099988, relative error: 2.213099e-07
numerical: -1.298825 analytic: -1.298825, relative error: 3.135454e-08
numerical: 0.502048 analytic: 0.502047, relative error: 6.933107e-08
numerical: 1.743347 analytic: 1.743347, relative error: 3.662161e-08
numerical: 1.278477 analytic: 1.278477, relative error: 1.013616e-07
numerical: 0.979175 analytic: 0.979175, relative error: 4.166445e-09
numerical: -1.291643 analytic: -1.291643, relative error: 2.288102e-08
numerical: 2.674868 analytic: 2.674868, relative error: 8.584169e-10
numerical: -0.354247 analytic: -0.354247, relative error: 7.465540e-08
numerical: -1.433069 analytic: -1.433069, relative error: 2.365212e-09
numerical: 3.245844 analytic: 3.245844, relative error: 2.494428e-08
numerical: 0.341999 analytic: 0.341999, relative error: 1.636487e-07
numerical: -0.387258 analytic: -0.387258, relative error: 5.702184e-08
numerical: 0.472072 analytic: 0.472072, relative error: 8.921830e-10
numerical: 0.446135 analytic: 0.446135, relative error: 1.320962e-08
numerical: 1.595110 analytic: 1.595110, relative error: 2.465434e-09
numerical: -0.181281 analytic: -0.181281, relative error: 6.306781e-08

In [48]:
# Now that we have a naive implementation of the softmax loss function and its gradient,
# implement a vectorized version in softmax_loss_vectorized.
# The two versions should compute the same results, but the vectorized version should be
# much faster.
tic = time.time()
loss_naive, grad_naive = softmax_loss_naive(W, X_dev, y_dev, 0.00001)
toc = time.time()
print 'naive loss: %e computed in %fs' % (loss_naive, toc - tic)

from cs231n.classifiers.softmax import softmax_loss_vectorized
tic = time.time()
loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.00001)
toc = time.time()
print 'vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic)

# As we did for the SVM, we use the Frobenius norm to compare the two versions
# of the gradient.
grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
print 'Loss difference: %f' % np.abs(loss_naive - loss_vectorized)
print 'Gradient difference: %f' % grad_difference


naive loss: 2.360216e+00 computed in 0.051759s
vectorized loss: 2.360216e+00 computed in 0.008733s
Loss difference: 0.000000
Gradient difference: 0.000000

In [55]:
# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of over 0.35 on the validation set.
from cs231n.classifiers import Softmax
results = {}
best_val = -1
best_softmax = None
learning_rates = [1e-7, 5e-7]
regularization_strengths = [5e4, 1e8]

for lr in learning_rates:
    for reg in regularization_strengths:
        softmax = Softmax()
        softmax.train(X_train, y_train, learning_rate=lr, reg=reg,
            num_iters=1500, verbose=True)
        
        y_train_pred = softmax.predict(X_train)
        pred_train = np.mean(y_train == y_train_pred)
        y_val_pred = softmax.predict(X_val)
        pred_val = np.mean(y_train == y_train_pred)
        results[(lr, reg)] = (pred_train, pred_val)
        if pred_val > best_val:
            best_val = pred_val
            best_softmax = softmax
        
    

################################################################################
# TODO:                                                                        #
# Use the validation set to set the learning rate and regularization strength. #
# This should be identical to the validation that you did for the SVM; save    #
# the best trained softmax classifer in best_softmax.                          #
################################################################################
pass
################################################################################
#                              END OF YOUR CODE                                #
################################################################################
    
# Print out results.
for lr, reg in sorted(results):
    train_accuracy, val_accuracy = results[(lr, reg)]
    print 'lr %e reg %e train accuracy: %f val accuracy: %f' % (
                lr, reg, train_accuracy, val_accuracy)
    
print 'best validation accuracy achieved during cross-validation: %f' % best_val


num_iters 1500
num_train 49000
batch_num 245
iteration 0 / 1500: loss 775.948411
iteration 100 / 1500: loss 284.573583
iteration 200 / 1500: loss 105.563185
iteration 300 / 1500: loss 39.858420
iteration 400 / 1500: loss 15.904724
iteration 500 / 1500: loss 7.202440
iteration 600 / 1500: loss 3.881284
iteration 700 / 1500: loss 2.758720
iteration 800 / 1500: loss 2.320390
iteration 900 / 1500: loss 2.132874
iteration 1000 / 1500: loss 2.118995
iteration 1100 / 1500: loss 2.095258
iteration 1200 / 1500: loss 2.065426
iteration 1300 / 1500: loss 2.062583
iteration 1400 / 1500: loss 2.057885
num_iters 1500
num_train 49000
batch_num 245
iteration 0 / 1500: loss 1540426.980304
iteration 100 / 1500: loss nan
iteration 200 / 1500: loss nan
iteration 300 / 1500: loss nan
iteration 400 / 1500: loss nan
iteration 500 / 1500: loss nan
iteration 600 / 1500: loss nan
iteration 700 / 1500: loss nan
iteration 800 / 1500: loss nan
iteration 900 / 1500: loss nan
iteration 1000 / 1500: loss nan
iteration 1100 / 1500: loss nan
iteration 1200 / 1500: loss nan
iteration 1300 / 1500: loss nan
iteration 1400 / 1500: loss nan
num_iters 1500
num_train 49000
batch_num 245
iteration 0 / 1500: loss 774.502964
iteration 100 / 1500: loss 6.868603
iteration 200 / 1500: loss 2.079709
iteration 300 / 1500: loss 2.063350
iteration 400 / 1500: loss 2.150903
iteration 500 / 1500: loss 2.083469
iteration 600 / 1500: loss 2.085259
iteration 700 / 1500: loss 2.072834
iteration 800 / 1500: loss 2.097953
iteration 900 / 1500: loss 2.070211
iteration 1000 / 1500: loss 2.116209
iteration 1100 / 1500: loss 2.096861
iteration 1200 / 1500: loss 2.061739
iteration 1300 / 1500: loss 2.091497
iteration 1400 / 1500: loss 2.098191
num_iters 1500
num_train 49000
batch_num 245
iteration 0 / 1500: loss 1534933.737964
iteration 100 / 1500: loss nan
iteration 200 / 1500: loss nan
iteration 300 / 1500: loss nan
iteration 400 / 1500: loss nan
iteration 500 / 1500: loss nan
iteration 600 / 1500: loss nan
iteration 700 / 1500: loss nan
iteration 800 / 1500: loss nan
iteration 900 / 1500: loss nan
iteration 1000 / 1500: loss nan
iteration 1100 / 1500: loss nan
iteration 1200 / 1500: loss nan
iteration 1300 / 1500: loss nan
iteration 1400 / 1500: loss nan
lr 1.000000e-07 reg 5.000000e+04 train accuracy: 0.330551 val accuracy: 0.330551
lr 1.000000e-07 reg 1.000000e+08 train accuracy: 0.100265 val accuracy: 0.100265
lr 5.000000e-07 reg 5.000000e+04 train accuracy: 0.324837 val accuracy: 0.324837
lr 5.000000e-07 reg 1.000000e+08 train accuracy: 0.100265 val accuracy: 0.100265
best validation accuracy achieved during cross-validation: 0.330551
cs231n/classifiers/softmax.py:67: RuntimeWarning: overflow encountered in exp
  exp = np.exp(pred - np.expand_dims(np.amax(pred, axis=1), axis = 1))
cs231n/classifiers/softmax.py:68: RuntimeWarning: invalid value encountered in divide
  prob = exp / exp.sum(axis = 1)
cs231n/classifiers/softmax.py:69: RuntimeWarning: divide by zero encountered in log
  loss = - np.log(prob[:, y]).sum() / X.shape[0]

In [56]:
# evaluate on test set
# Evaluate the best softmax on test set
y_test_pred = best_softmax.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print 'softmax on raw pixels final test set accuracy: %f' % (test_accuracy, )


softmax on raw pixels final test set accuracy: 0.342000

In [57]:
# Visualize the learned weights for each class
w = best_softmax.W[:-1,:] # strip out the bias
w = w.reshape(32, 32, 3, 10)

w_min, w_max = np.min(w), np.max(w)

classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in xrange(10):
  plt.subplot(2, 5, i + 1)
  
  # Rescale the weights to be between 0 and 255
  wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
  plt.imshow(wimg.astype('uint8'))
  plt.axis('off')
  plt.title(classes[i])



In [ ]: