In [5]:
import pandas as pd
data = pd.read_csv("../../season_1_sad/training_data/weather_data/weather_data_2016-01-06.csv")
data = data.drop_duplicates(["time"])
data.reset_index(drop=True,inplace=True)
print(data.columns)
date = data["date"].unique()[0]
week = data["week"].unique()[0]
dict1 = dict(zip(data.time,data.Weather))
dict2 = dict(zip(data.time,data["PM2.5"]))
dict3 = dict(zip(data.time,data["temperature"]))
In [6]:
df = pd.DataFrame(columns=["time","Weather","PM2.5","date","week"])
df["time"]=pd.Series(range(1,145))
df["Weather"]=0
df["PM2.5"]=0
df["temperature"]=0
df["date"] = date
df["week"] = week
default_wea = 0
default_pm = 0
default_tem = 0
for x in df["time"]:
default_wea = dict1.get(x,default_wea)
default_pm = dict2.get(x,default_pm)
default_tem = dict3.get(x,default_tem)
df["Weather"] = df["Weather"].set_value(int(x)-1,default_wea)
df["PM2.5"] = df["PM2.5"].set_value(int(x)-1,default_pm)
df["temperature"] = df["temperature"].set_value(int(x)-1,default_tem)
In [7]:
for x in df["time"]:
if(x>2 and x<143):
s1=df["Weather"][int(x)-1]
s2=df["Weather"][int(x)+1]
if(s1 == s2):
df["Weather"][x]=s1
else:
pass
else:
pass
print(df)
In [15]:
plot_single_day_weather(df)
In [ ]:
In [ ]:
In [ ]:
In [ ]: