Softmax exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

This exercise is analogous to the SVM exercise. You will:

  • implement a fully-vectorized loss function for the Softmax classifier
  • implement the fully-vectorized expression for its analytic gradient
  • check your implementation with numerical gradient
  • use a validation set to tune the learning rate and regularization strength
  • optimize the loss function with SGD
  • visualize the final learned weights

In [1]:
import random
import numpy as np
from cs231n.data_utils import load_CIFAR10
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# for auto-reloading extenrnal modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2

In [2]:
def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000, num_dev=500):
  """
  Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
  it for the linear classifier. These are the same steps as we used for the
  SVM, but condensed to a single function.  
  """
  # Load the raw CIFAR-10 data
  cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
  X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
  
  # subsample the data
  mask = range(num_training, num_training + num_validation)
  X_val = X_train[mask]
  y_val = y_train[mask]
  mask = range(num_training)
  X_train = X_train[mask]
  y_train = y_train[mask]
  mask = range(num_test)
  X_test = X_test[mask]
  y_test = y_test[mask]
  mask = np.random.choice(num_training, num_dev, replace=False)
  X_dev = X_train[mask]
  y_dev = y_train[mask]
  
  # Preprocessing: reshape the image data into rows
  X_train = np.reshape(X_train, (X_train.shape[0], -1))
  X_val = np.reshape(X_val, (X_val.shape[0], -1))
  X_test = np.reshape(X_test, (X_test.shape[0], -1))
  X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))
  
  # Normalize the data: subtract the mean image
  mean_image = np.mean(X_train, axis = 0)
  X_train -= mean_image
  X_val -= mean_image
  X_test -= mean_image
  X_dev -= mean_image
  
  # add bias dimension and transform into columns
  X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
  X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
  X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
  X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
  
  return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev


# Invoke the above function to get our data.
X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev = get_CIFAR10_data()
print 'Train data shape: ', X_train.shape
print 'Train labels shape: ', y_train.shape
print 'Validation data shape: ', X_val.shape
print 'Validation labels shape: ', y_val.shape
print 'Test data shape: ', X_test.shape
print 'Test labels shape: ', y_test.shape
print 'dev data shape: ', X_dev.shape
print 'dev labels shape: ', y_dev.shape


Train data shape:  (49000, 3073)
Train labels shape:  (49000,)
Validation data shape:  (1000, 3073)
Validation labels shape:  (1000,)
Test data shape:  (1000, 3073)
Test labels shape:  (1000,)
dev data shape:  (500, 3073)
dev labels shape:  (500,)

Softmax Classifier

Your code for this section will all be written inside cs231n/classifiers/softmax.py.


In [3]:
# First implement the naive softmax loss function with nested loops.
# Open the file cs231n/classifiers/softmax.py and implement the
# softmax_loss_naive function.

from cs231n.classifiers.softmax import softmax_loss_naive
import time

# Generate a random softmax weight matrix and use it to compute the loss.
W = np.random.randn(3073, 10) * 0.0001
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0)

# As a rough sanity check, our loss should be something close to -log(0.1).
print 'loss: %f' % loss
print 'sanity check: %f' % (-np.log(0.1))


loss: 2.317537
sanity check: 2.302585

Inline Question 1:

Why do we expect our loss to be close to -log(0.1)? Explain briefly.**

Your answer: Fill this in


In [4]:
# Complete the implementation of softmax_loss_naive and implement a (naive)
# version of the gradient that uses nested loops.
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0)

# As we did for the SVM, use numeric gradient checking as a debugging tool.
# The numeric gradient should be close to the analytic gradient.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad, 10)

# similar to SVM case, do another gradient check with regularization
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 1e2)
f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 1e2)[0]
grad_numerical = grad_check_sparse(f, W, grad, 10)


numerical: -0.401984 analytic: -0.401984, relative error: 6.097640e-10
numerical: 1.481404 analytic: 1.481404, relative error: 3.042766e-08
numerical: 0.257734 analytic: 0.257734, relative error: 3.172889e-08
numerical: 0.960675 analytic: 0.960675, relative error: 8.121812e-08
numerical: -1.890028 analytic: -1.890028, relative error: 1.928732e-09
numerical: -2.040616 analytic: -2.040616, relative error: 1.371834e-08
numerical: -0.959879 analytic: -0.959879, relative error: 3.211425e-08
numerical: -2.465224 analytic: -2.465224, relative error: 3.555664e-09
numerical: 0.851269 analytic: 0.851269, relative error: 5.724526e-08
numerical: 0.098887 analytic: 0.098887, relative error: 1.458112e-07
numerical: -2.362893 analytic: -2.362893, relative error: 1.263091e-08
numerical: -1.952024 analytic: -1.952024, relative error: 3.854734e-08
numerical: 0.183860 analytic: 0.183860, relative error: 9.533566e-08
numerical: 0.758876 analytic: 0.758876, relative error: 1.114907e-07
numerical: -1.920066 analytic: -1.920066, relative error: 1.811346e-08
numerical: -4.947918 analytic: -4.947918, relative error: 1.015992e-08
numerical: -0.173925 analytic: -0.173925, relative error: 4.866553e-08
numerical: -1.022928 analytic: -1.022928, relative error: 3.079092e-08
numerical: -0.166574 analytic: -0.166575, relative error: 2.260966e-07
numerical: -1.861292 analytic: -1.861292, relative error: 2.484710e-09

In [6]:
# Now that we have a naive implementation of the softmax loss function and its gradient,
# implement a vectorized version in softmax_loss_vectorized.
# The two versions should compute the same results, but the vectorized version should be
# much faster.
tic = time.time()
loss_naive, grad_naive = softmax_loss_naive(W, X_dev, y_dev, 0.00001)
toc = time.time()
print 'naive loss: %e computed in %fs' % (loss_naive, toc - tic)

from cs231n.classifiers.softmax import softmax_loss_vectorized
tic = time.time()
loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.00001)
toc = time.time()
print 'vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic)

# As we did for the SVM, we use the Frobenius norm to compare the two versions
# of the gradient.
grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
print 'Loss difference: %f' % np.abs(loss_naive - loss_vectorized)
print 'Gradient difference: %f' % grad_difference


naive loss: 2.317537e+00 computed in 0.177921s
vectorized loss: 2.317537e+00 computed in 0.007069s
Loss difference: 0.000000
Gradient difference: 0.000000

In [7]:
# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of over 0.35 on the validation set.
from cs231n.classifiers import Softmax
results = {}
best_val = -1
best_softmax = None
learning_rates = [1e-7, 2e-7, 3e-7, 5e-5, 8e-7]
regularization_strengths = [1e4, 2e4, 3e4, 4e4, 5e4, 6e4, 7e4, 8e4, 1e5]

################################################################################
# TODO:                                                                        #
# Use the validation set to set the learning rate and regularization strength. #
# This should be identical to the validation that you did for the SVM; save    #
# the best trained softmax classifer in best_softmax.                          #
################################################################################
for lr in learning_rates:
    for rs in regularization_strengths:
        softmax = Softmax()
        softmax.train(X_train, y_train, learning_rate=lr, reg=rs , num_iters = 1500)
        train_accuracy = np.mean(y_train == softmax.predict(X_train))
        val_accuracy = np.mean(y_val == softmax.predict(X_val))
        results[(lr, rs)] = (train_accuracy, val_accuracy)
        if val_accuracy > best_val:
            best_val = val_accuracy
            best_softmax = softmax
################################################################################
#                              END OF YOUR CODE                                #
################################################################################
    
# Print out results.
for lr, reg in sorted(results):
    train_accuracy, val_accuracy = results[(lr, reg)]
    print 'lr %e reg %e train accuracy: %f val accuracy: %f' % (
                lr, reg, train_accuracy, val_accuracy)
    
print 'best validation accuracy achieved during cross-validation: %f' % best_val


cs231n/classifiers/softmax.py:85: RuntimeWarning: divide by zero encountered in log
  loss += -np.sum(np.log(yi_prob_per_image))
cs231n/classifiers/softmax.py:94: RuntimeWarning: overflow encountered in double_scalars
  loss += 0.5 * reg * np.sum(W * W)
cs231n/classifiers/softmax.py:94: RuntimeWarning: overflow encountered in multiply
  loss += 0.5 * reg * np.sum(W * W)
cs231n/classifiers/softmax.py:78: RuntimeWarning: overflow encountered in subtract
  scores -= log_c[:, None]
cs231n/classifiers/softmax.py:95: RuntimeWarning: overflow encountered in multiply
  dW += reg*W
lr 1.000000e-07 reg 1.000000e+04 train accuracy: 0.333878 val accuracy: 0.329000
lr 1.000000e-07 reg 2.000000e+04 train accuracy: 0.353857 val accuracy: 0.369000
lr 1.000000e-07 reg 3.000000e+04 train accuracy: 0.345041 val accuracy: 0.356000
lr 1.000000e-07 reg 4.000000e+04 train accuracy: 0.338980 val accuracy: 0.360000
lr 1.000000e-07 reg 5.000000e+04 train accuracy: 0.330653 val accuracy: 0.344000
lr 1.000000e-07 reg 6.000000e+04 train accuracy: 0.325878 val accuracy: 0.342000
lr 1.000000e-07 reg 7.000000e+04 train accuracy: 0.314041 val accuracy: 0.332000
lr 1.000000e-07 reg 8.000000e+04 train accuracy: 0.317061 val accuracy: 0.337000
lr 1.000000e-07 reg 1.000000e+05 train accuracy: 0.296082 val accuracy: 0.308000
lr 2.000000e-07 reg 1.000000e+04 train accuracy: 0.368224 val accuracy: 0.382000
lr 2.000000e-07 reg 2.000000e+04 train accuracy: 0.355347 val accuracy: 0.374000
lr 2.000000e-07 reg 3.000000e+04 train accuracy: 0.344918 val accuracy: 0.354000
lr 2.000000e-07 reg 4.000000e+04 train accuracy: 0.341898 val accuracy: 0.362000
lr 2.000000e-07 reg 5.000000e+04 train accuracy: 0.334143 val accuracy: 0.354000
lr 2.000000e-07 reg 6.000000e+04 train accuracy: 0.330163 val accuracy: 0.344000
lr 2.000000e-07 reg 7.000000e+04 train accuracy: 0.323673 val accuracy: 0.337000
lr 2.000000e-07 reg 8.000000e+04 train accuracy: 0.316796 val accuracy: 0.329000
lr 2.000000e-07 reg 1.000000e+05 train accuracy: 0.301224 val accuracy: 0.318000
lr 3.000000e-07 reg 1.000000e+04 train accuracy: 0.373184 val accuracy: 0.388000
lr 3.000000e-07 reg 2.000000e+04 train accuracy: 0.358388 val accuracy: 0.377000
lr 3.000000e-07 reg 3.000000e+04 train accuracy: 0.338551 val accuracy: 0.358000
lr 3.000000e-07 reg 4.000000e+04 train accuracy: 0.328510 val accuracy: 0.351000
lr 3.000000e-07 reg 5.000000e+04 train accuracy: 0.333469 val accuracy: 0.340000
lr 3.000000e-07 reg 6.000000e+04 train accuracy: 0.320408 val accuracy: 0.337000
lr 3.000000e-07 reg 7.000000e+04 train accuracy: 0.316184 val accuracy: 0.329000
lr 3.000000e-07 reg 8.000000e+04 train accuracy: 0.325265 val accuracy: 0.339000
lr 3.000000e-07 reg 1.000000e+05 train accuracy: 0.310061 val accuracy: 0.320000
lr 8.000000e-07 reg 1.000000e+04 train accuracy: 0.370408 val accuracy: 0.378000
lr 8.000000e-07 reg 2.000000e+04 train accuracy: 0.347102 val accuracy: 0.367000
lr 8.000000e-07 reg 3.000000e+04 train accuracy: 0.337939 val accuracy: 0.330000
lr 8.000000e-07 reg 4.000000e+04 train accuracy: 0.329224 val accuracy: 0.349000
lr 8.000000e-07 reg 5.000000e+04 train accuracy: 0.331918 val accuracy: 0.350000
lr 8.000000e-07 reg 6.000000e+04 train accuracy: 0.314857 val accuracy: 0.327000
lr 8.000000e-07 reg 7.000000e+04 train accuracy: 0.311735 val accuracy: 0.325000
lr 8.000000e-07 reg 8.000000e+04 train accuracy: 0.295878 val accuracy: 0.313000
lr 8.000000e-07 reg 1.000000e+05 train accuracy: 0.302265 val accuracy: 0.305000
lr 5.000000e-05 reg 1.000000e+04 train accuracy: 0.159306 val accuracy: 0.155000
lr 5.000000e-05 reg 2.000000e+04 train accuracy: 0.109857 val accuracy: 0.108000
lr 5.000000e-05 reg 3.000000e+04 train accuracy: 0.058612 val accuracy: 0.056000
lr 5.000000e-05 reg 4.000000e+04 train accuracy: 0.135327 val accuracy: 0.129000
lr 5.000000e-05 reg 5.000000e+04 train accuracy: 0.082469 val accuracy: 0.085000
lr 5.000000e-05 reg 6.000000e+04 train accuracy: 0.100265 val accuracy: 0.087000
lr 5.000000e-05 reg 7.000000e+04 train accuracy: 0.100265 val accuracy: 0.087000
lr 5.000000e-05 reg 8.000000e+04 train accuracy: 0.100265 val accuracy: 0.087000
lr 5.000000e-05 reg 1.000000e+05 train accuracy: 0.100265 val accuracy: 0.087000
best validation accuracy achieved during cross-validation: 0.388000

In [8]:
# evaluate on test set
# Evaluate the best softmax on test set
y_test_pred = best_softmax.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print 'softmax on raw pixels final test set accuracy: %f' % (test_accuracy, )


softmax on raw pixels final test set accuracy: 0.375000

In [9]:
# Visualize the learned weights for each class
w = best_softmax.W[:-1,:] # strip out the bias
w = w.reshape(32, 32, 3, 10)

w_min, w_max = np.min(w), np.max(w)

classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in xrange(10):
  plt.subplot(2, 5, i + 1)
  
  # Rescale the weights to be between 0 and 255
  wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
  plt.imshow(wimg.astype('uint8'))
  plt.axis('off')
  plt.title(classes[i])



In [ ]: