In [1]:
using Flows
In [2]:
@funs A,B,C
Out[2]:
In [3]:
A+3B
Out[3]:
In [4]:
_C=commutator
Out[4]:
In [5]:
ex = _C(A,B)-_C(B,A)+_C(B,C+A)+A
Out[5]:
In [6]:
s=string(ex)
Out[6]:
In [7]:
eval(parse(s))
Out[7]:
In [8]:
_C(A,B)-(-_C(B,A))
Out[8]:
In [9]:
_C(A,B)+_C(B,A)
Out[9]:
In [10]:
_C(A,A)
Out[10]:
In [11]:
_C(A,op_zero)
Out[11]:
In [12]:
ex = _C(_C(B,A+2C),3C+_C(A-2B, C))
Out[12]:
In [13]:
normalize(ex)
Out[13]:
In [14]:
ex=expand(ex)
Out[14]:
In [15]:
ex=normalize(ex)
Out[15]:
In [16]:
normalize(ex)
Out[16]:
In [17]:
normalize(_C(_C(A,B),C))
Out[17]:
In [18]:
normalize(_C(_C(B,A),C))
Out[18]:
In [19]:
normalize(_C(C,_C(C,B)))
Out[19]:
In [20]:
normalize(_C(A,B))
Out[20]:
In [21]:
normalize(_C(B,A))
Out[21]:
In [22]:
ex = _C(_C(A,B),_C(A,C))+_C(_C(A,B),_C(C,A))
Out[22]:
In [23]:
expand(ex)
Out[23]:
In [24]:
normalize(ex)
Out[24]:
In [25]:
@x_vars u,v,w
Out[25]:
In [26]:
A(u)
Out[26]:
In [27]:
(A+B)(u)
Out[27]:
In [28]:
@t_vars t,s,r
Out[28]:
In [29]:
ex=E(A+B,t,u)
Out[29]:
In [30]:
t_derivative(ex,t)
Out[30]:
In [31]:
ex=_C(A,B)(u)
Out[31]:
In [32]:
differential(ex,u,v)
Out[32]:
In [33]:
typeof(2A)
Out[33]:
In [34]:
(2A)(u)
Out[34]:
In [35]:
commutator(A,_C(A,B),u)
Out[35]:
In [36]:
commutator(A,_C(A,B))
Out[36]:
In [37]:
op_zero(u) # zero operator ...
Out[37]:
In [38]:
ex=(_C(A,B)-17C)(u,v,w+v)
Out[38]:
In [39]:
expand(resolve_vector_field_expressions(ex))
Out[39]:
In [40]:
ex=(A-A)(u)
Out[40]:
In [41]:
resolve_vector_field_expressions(ex)
Out[41]:
In [42]:
ex=(A+B)(u)+(C-A)(u)
Out[42]:
In [43]:
resolve_vector_field_expressions(ex)
Out[43]:
In [44]:
ex=_C(A,B)(u,v,w)+_C(B,A)(u,v,w)
Out[44]:
In [45]:
resolve_vector_field_expressions(ex)
Out[45]:
In [ ]: