In [1]:
using Flows

In [2]:
@funs F,G,H


Out[2]:
(F,G,H)

In [3]:
@x_vars u,v


Out[3]:
(u,v)

In [4]:
@t_vars t,s


Out[4]:
(t,s)

In [5]:
ex=F+2(F+3G)


Out[5]:
$6G+3F$

In [6]:
exp(2t+3s,D(2F+3G))


Out[6]:
$\mathrm{e}^{(3s+2t)D_{3G+2F}}$

In [7]:
ex = D(3F+2G)


Out[7]:
$D_{2G+3F}$

In [8]:
expand_lie_derivatives(ex)


Out[8]:
$3D_{F}+2D_{G}$

In [9]:
D(-1F)*D(2F)


Out[9]:
$D_{-F}D_{2F}$

In [10]:
exp(2t+3s,D(2F+3G))D(3F+2G)


Out[10]:
$\mathrm{e}^{(3s+2t)D_{3G+2F}}D_{2G+3F}$

In [11]:
ex=D(F)*D(G)


Out[11]:
$D_{F}D_{G}$

In [12]:
typeof(ex)


Out[12]:
Flows.LieProduct

In [13]:
D(H)*ex


Out[13]:
$D_{H}D_{F}D_{G}$

In [14]:
ex=D(F)*(D(G)+D(H))*exp(2t-3s,D(3F))


Out[14]:
$D_{F}(D_{G}+D_{H})\mathrm{e}^{(-3s+2t)D_{3F}}$

In [15]:
string(ex)


Out[15]:
"D(F)*(D(G)+D(H))*exp(-3s+2t,D(3F))"

In [16]:
6D(F)D(H)+6D(F)D(G)


Out[16]:
$6D_{F}D_{G}+6D_{F}D_{H}$

In [17]:
typeof(ex)


Out[17]:
Flows.LieProduct

In [18]:
D(F)D(G)-D(G)D(F)


Out[18]:
$D_{F}D_{G}-D_{G}D_{F}$

In [19]:
typeof(D(F))


Out[19]:
Flows.LieDerivative

In [20]:
exp(-t+17s,D(3F-4G))


Out[20]:
$\mathrm{e}^{(17s-t)D_{-4G+3F}}$

In [21]:
typeof(exp(t,D(F)))


Out[21]:
Flows.LieExponential

In [22]:
-4F+3F


Out[22]:
$-F$

In [23]:
ex


Out[23]:
$D_{F}(D_{G}+D_{H})\mathrm{e}^{(-3s+2t)D_{3F}}$

In [24]:
comb=apply(ex,F(u),u)


Out[24]:
$D_{F}(D_{G}+D_{H})\mathrm{e}^{(-3s+2t)D_{3F}}F(u)$

In [25]:
evaluate(comb)


Out[25]:
$F''(\mathcal{E}_{3F}(-3s+2t,u))(\partial_{2}\mathcal{E}_{3F}(-3s+2t,u)\cdot G(u),\partial_{2}\mathcal{E}_{3F}(-3s+2t,u)\cdot F(u))+F'(\mathcal{E}_{3F}(-3s+2t,u))\cdot (\partial_{2}^{2}\mathcal{E}_{3F}(-3s+2t,u)(G(u),F(u))+\partial_{2}\mathcal{E}_{3F}(-3s+2t,u)\cdot G'(u)\cdot F(u))+F''(\mathcal{E}_{3F}(-3s+2t,u))(\partial_{2}\mathcal{E}_{3F}(-3s+2t,u)\cdot H(u),\partial_{2}\mathcal{E}_{3F}(-3s+2t,u)\cdot F(u))+F'(\mathcal{E}_{3F}(-3s+2t,u))\cdot (\partial_{2}^{2}\mathcal{E}_{3F}(-3s+2t,u)(H(u),F(u))+\partial_{2}\mathcal{E}_{3F}(-3s+2t,u)\cdot H'(u)\cdot F(u))$

In [26]:
-D(F)*G(u)


Out[26]:
$(-D_{F})G(u)$

In [27]:
string(3exp(t,D(F))*u+v)


Out[27]:
"apply(3exp(t,D(F)),u,u)+v"

In [28]:
ex = apply(D(F)*D(G),F(u)+G(u),u)


Out[28]:
$D_{F}D_{G}[G(\cdot)+F(\cdot)](u)$

In [29]:
evaluate(ex)


Out[29]:
$G''(u)(G(u),F(u))+F'(u)\cdot G'(u)\cdot F(u)+F''(u)(G(u),F(u))+G'(u)\cdot G'(u)\cdot F(u)$

In [30]:
comb=apply(D(F), u+2v,u)


Out[30]:
$D_{F}[(\cdot)+2v](u)$

In [31]:
evaluate(comb)


Out[31]:
$F(u)$

In [32]:
string(comb)


Out[32]:
"apply(D(F),u+2v,u)"

In [33]:
ex=D(F+G)


Out[33]:
$D_{G+F}$

In [34]:
typeof(ex.F)


Out[34]:
Flows.VectorFieldLinearCombination

In [35]:
evaluate(D(F),(G(u)+3H(u)),u)


Out[35]:
$3H'(u)\cdot F(u)+G'(u)\cdot F(u)$

In [36]:
evaluate(D(F),(G(H(u))),u)


Out[36]:
$G'(H(u))\cdot H'(u)\cdot F(u)$

In [37]:
evaluate(D(F),u,u)


Out[37]:
$F(u)$

In [38]:
evaluate(D(F+2G),H(u),u)


Out[38]:
$H'(u)\cdot (2G+F)(u)$

In [39]:
ex = D(F)*G(u)


Out[39]:
$D_{F}G(u)$

In [40]:
evaluate(ex)


Out[40]:
$G'(u)\cdot F(u)$

In [41]:
evaluate(exp(t,D(F)), G(u)+3H(u), u)


Out[41]:
$3H(\mathcal{E}_{F}(t,u))+G(\mathcal{E}_{F}(t,u))$

In [42]:
evaluate(exp(t,D(F)), G(H(u)), u)


Out[42]:
$G(H(\mathcal{E}_{F}(t,u)))$

In [43]:
evaluate(exp(t,D(F)), u, u)


Out[43]:
$\mathcal{E}_{F}(t,u)$

In [44]:
evaluate(exp(t+2s,D(3F)), u, u)


Out[44]:
$\mathcal{E}_{3F}(2s+t,u)$

In [45]:
evaluate(exp(t,D(F+G)), u, u)


Out[45]:
$\mathcal{E}_{G+F}(t,u)$

In [46]:
evaluate(D(F)-2D(G),H(u))


Out[46]:
$H'(u)\cdot F(u)-2H'(u)\cdot G(u)$

In [47]:
F(u)-G(v)==F(u)-G(v)


Out[47]:
true

In [48]:
ex = (D(F)*D(G)-D(G)*D(F))*u


Out[48]:
$(D_{F}D_{G}-D_{G}D_{F})\mathrm{Id}(u)$

In [49]:
evaluate(ex)


Out[49]:
$G'(u)\cdot F(u)-F'(u)\cdot G(u)$

In [50]:
ex = exp(t,D(F))*exp(s,D(G))*H(u)


Out[50]:
$\mathrm{e}^{tD_{F}}\mathrm{e}^{sD_{G}}H(u)$

In [51]:
evaluate(ex)


Out[51]:
$H(\mathcal{E}_{G}(s,\mathcal{E}_{F}(t,u)))$

In [52]:
string(ex.lie_ex)


Out[52]:
"exp(t,D(F))*exp(s,D(G))"

In [53]:
G(evaluate_lie_expressions(D(F)*v+v))


Out[53]:
$G(F(v)+v)$

In [54]:
Flows.LieExpressionToSpaceExpressionApplication(exp(t,D(F))*exp(s,D(G)),H(u),u)


Out[54]:
$\mathrm{e}^{tD_{F}}\mathrm{e}^{sD_{G}}H(u)$

In [55]:
evaluate(D(F)*D(F)*exp(t,D(F))*u)


Out[55]:
$\partial_{2}\mathcal{E}_{F}(t,u)\cdot F'(u)\cdot F(u)+\partial_{2}^{2}\mathcal{E}_{F}(t,u)(F(u),F(u))$

In [56]:
evaluate(D(F)*exp(t,D(F))*D(F)*u)


Out[56]:
$F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot F(u)$

In [57]:
evaluate(D(F)*exp(t,D(F))*D(F)*D(F)*u)


Out[57]:
$F'(\mathcal{E}_{F}(t,u))\cdot F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot F(u)+F''(\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot F(u))$

In [58]:
ex =(D(F)+D(G))*(D(F)+D(G))


Out[58]:
$(D_{F}+D_{G})(D_{F}+D_{G})$

In [59]:
expand(ex)


Out[59]:
$D_{F}D_{F}+D_{F}D_{G}+D_{G}D_{F}+D_{G}D_{G}$

In [60]:
ex=(D(F)+D(G))^3


Out[60]:
$(D_{F}+D_{G})(D_{F}+D_{G})(D_{F}+D_{G})$

In [61]:
expand(ex)


Out[61]:
$D_{G}D_{G}D_{G}+D_{G}D_{F}D_{G}+D_{G}D_{F}D_{F}+D_{F}D_{F}D_{G}+D_{F}D_{F}D_{F}+D_{F}D_{G}D_{F}+D_{G}D_{G}D_{F}+D_{F}D_{G}D_{G}$

In [62]:
ex = D(G)^2*exp(t,D(F))*D(F)^2*exp(t,D(G))*u


Out[62]:
$D_{G}D_{G}\mathrm{e}^{tD_{F}}D_{F}D_{F}\mathrm{e}^{tD_{G}}\mathrm{Id}(u)$

In [63]:
evaluate(ex)


Out[63]:
$4\partial_{2}^{3}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+\partial_{2}^{3}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),F(\mathcal{E}_{F}(t,u)),\partial_{2}^{2}\mathcal{E}_{F}(t,u)(G(u),G(u))+\partial_{2}\mathcal{E}_{F}(t,u)\cdot G'(u)\cdot G(u))+\partial_{2}^{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot F(\mathcal{E}_{F}(t,u)),\partial_{2}^{2}\mathcal{E}_{F}(t,u)(G(u),G(u))+\partial_{2}\mathcal{E}_{F}(t,u)\cdot G'(u)\cdot G(u))+2\partial_{2}^{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F''(\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+F'(\mathcal{E}_{F}(t,u))\cdot F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+\partial_{2}^{3}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+2\partial_{2}^{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F''(\mathcal{E}_{F}(t,u))(\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+F'(\mathcal{E}_{F}(t,u))\cdot (\partial_{2}^{2}\mathcal{E}_{F}(t,u)(G(u),G(u))+\partial_{2}\mathcal{E}_{F}(t,u)\cdot G'(u)\cdot G(u)),F(\mathcal{E}_{F}(t,u)))+\partial_{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))\cdot (F'''(\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+F''(\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),\partial_{2}^{2}\mathcal{E}_{F}(t,u)(G(u),G(u))+\partial_{2}\mathcal{E}_{F}(t,u)\cdot G'(u)\cdot G(u))+2F''(\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+F'(\mathcal{E}_{F}(t,u))\cdot (F''(\mathcal{E}_{F}(t,u))(\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+F'(\mathcal{E}_{F}(t,u))\cdot (\partial_{2}^{2}\mathcal{E}_{F}(t,u)(G(u),G(u))+\partial_{2}\mathcal{E}_{F}(t,u)\cdot G'(u)\cdot G(u))))+2\partial_{2}^{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+\partial_{2}^{4}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))$

In [64]:
expand(evaluate(ex))


Out[64]:
$\partial_{2}^{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot F(\mathcal{E}_{F}(t,u)),\partial_{2}^{2}\mathcal{E}_{F}(t,u)(G(u),G(u)))+2\partial_{2}^{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F''(\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+\partial_{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))\cdot F'(\mathcal{E}_{F}(t,u))\cdot F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}^{2}\mathcal{E}_{F}(t,u)(G(u),G(u))+2\partial_{2}^{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F''(\mathcal{E}_{F}(t,u))(\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u)),F(\mathcal{E}_{F}(t,u)))+\partial_{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))\cdot F''(\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G'(u)\cdot G(u))+\partial_{2}^{4}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+2\partial_{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))\cdot F''(\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+\partial_{2}^{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G'(u)\cdot G(u))+2\partial_{2}^{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+\partial_{2}^{3}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G'(u)\cdot G(u))+\partial_{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))\cdot F'(\mathcal{E}_{F}(t,u))\cdot F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot G'(u)\cdot G(u)+\partial_{2}^{3}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),F(\mathcal{E}_{F}(t,u)),\partial_{2}^{2}\mathcal{E}_{F}(t,u)(G(u),G(u)))+\partial_{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))\cdot F''(\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),\partial_{2}^{2}\mathcal{E}_{F}(t,u)(G(u),G(u)))+2\partial_{2}^{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+\partial_{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))\cdot F'(\mathcal{E}_{F}(t,u))\cdot F''(\mathcal{E}_{F}(t,u))(\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+4\partial_{2}^{3}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+2\partial_{2}^{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}\mathcal{E}_{F}(t,u)\cdot G'(u)\cdot G(u),F(\mathcal{E}_{F}(t,u)))+2\partial_{2}^{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot \partial_{2}^{2}\mathcal{E}_{F}(t,u)(G(u),G(u)),F(\mathcal{E}_{F}(t,u)))+\partial_{2}^{3}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))(F'(\mathcal{E}_{F}(t,u))\cdot F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))+\partial_{2}\mathcal{E}_{G}(t,\mathcal{E}_{F}(t,u))\cdot F'''(\mathcal{E}_{F}(t,u))(F(\mathcal{E}_{F}(t,u)),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u),\partial_{2}\mathcal{E}_{F}(t,u)\cdot G(u))$

In [65]:
C = commutator


Out[65]:
commutator (generic function with 4 methods)

In [66]:
ex = C(5D(F)+7D(H),2D(G)+3D(H))


Out[66]:
$[5D_{F}+7D_{H},2D_{G}+3D_{H}]$

In [67]:
expand(ex)


Out[67]:
$14[D_{H},D_{G}]+15[D_{F},D_{H}]+10[D_{F},D_{G}]$

In [68]:
ex = (11exp(t,F)+13exp(t,G))*C(5D(F)+7D(H),2D(G)+3D(H))


Out[68]:
$(11\mathrm{e}^{tD_{F}}+13\mathrm{e}^{tD_{G}})[5D_{F}+7D_{H},2D_{G}+3D_{H}]$

In [69]:
expand(ex, expand_commutators=false)


Out[69]:
$11\mathrm{e}^{tD_{F}}[5D_{F}+7D_{H},2D_{G}+3D_{H}]+13\mathrm{e}^{tD_{G}}[5D_{F}+7D_{H},2D_{G}+3D_{H}]$

In [70]:
ex = expand(ex)


Out[70]:
$195\mathrm{e}^{tD_{G}}[D_{F},D_{H}]+110\mathrm{e}^{tD_{F}}[D_{F},D_{G}]+154\mathrm{e}^{tD_{F}}[D_{H},D_{G}]+165\mathrm{e}^{tD_{F}}[D_{F},D_{H}]+182\mathrm{e}^{tD_{G}}[D_{H},D_{G}]+130\mathrm{e}^{tD_{G}}[D_{F},D_{G}]$

In [71]:
ex = merge_lie_derivatives(ex)


Out[71]:
$165\mathrm{e}^{tD_{F}}D_{[H,F]}+D_{0}+195\mathrm{e}^{tD_{G}}D_{[H,F]}+182\mathrm{e}^{tD_{G}}D_{[G,H]}+130\mathrm{e}^{tD_{G}}D_{[G,F]}+110\mathrm{e}^{tD_{F}}D_{[G,F]}+154\mathrm{e}^{tD_{F}}D_{[G,H]}$

In [72]:
expand(ex, expand_commutators=false)


Out[72]:
$165\mathrm{e}^{tD_{F}}D_{[H,F]}+D_{0}+195\mathrm{e}^{tD_{G}}D_{[H,F]}+182\mathrm{e}^{tD_{G}}D_{[G,H]}+130\mathrm{e}^{tD_{G}}D_{[G,F]}+110\mathrm{e}^{tD_{F}}D_{[G,F]}+154\mathrm{e}^{tD_{F}}D_{[G,H]}$

In [73]:
ex = (C(D(F),C(D(G),D(H))) + C(D(G),C(D(H),D(F))) + C(D(H),C(D(F),D(G))))*u


Out[73]:
$([D_{G},[D_{H},D_{F}]]+[D_{F},[D_{G},D_{H}]]+[D_{H},[D_{F},D_{G}]])\mathrm{Id}(u)$

In [74]:
merge_lie_derivatives(ex)


Out[74]:
$D_{[[G,F],H]+[[F,H],G]+[[H,G],F]}\mathrm{Id}(u)$

In [75]:
merge_lie_derivatives(ex, merge_linear_combinations=false)


Out[75]:
$(D_{[[H,G],F]}+D_{[[G,F],H]}+D_{[[F,H],G]})\mathrm{Id}(u)$

In [76]:
ex = expand_lie_commutators(ex)


Out[76]:
$(-(D_{G}D_{H}-D_{H}D_{G})D_{F}-(D_{H}D_{F}-D_{F}D_{H})D_{G}+D_{H}(D_{F}D_{G}-D_{G}D_{F})+D_{F}(D_{G}D_{H}-D_{H}D_{G})-(D_{F}D_{G}-D_{G}D_{F})D_{H}+D_{G}(D_{H}D_{F}-D_{F}D_{H}))\mathrm{Id}(u)$

In [77]:
ex = expand_lie_expressions(ex)


Out[77]:
$(0)\mathrm{Id}(u)$

In [78]:
evaluate_lie_expressions(ex)


Out[78]:
$0$

In [79]:
ex=F(u,D(F)*u)


Out[79]:
$F'(u)\cdot D_{F}\mathrm{Id}(u)$

In [80]:
evaluate_lie_expressions(ex)


Out[80]:
$F'(u)\cdot F(u)$

In [81]:
evaluate_lie_expressions(ex)


Out[81]:
$F'(u)\cdot F(u)$

In [82]:
ex = Flows.commutator(D(F),D(F)+D(G))


Out[82]:
$[D_{F},D_{F}+D_{G}]$

In [83]:
LieProduct(LieExpression[])


Out[83]:
$\mathrm{Id}$

In [84]:
lie_id


Out[84]:
$\mathrm{Id}$

In [85]:
ex = exp(t,D(C(F,G)))*u


Out[85]:
$\mathrm{e}^{tD_{[F,G]}}\mathrm{Id}(u)$

In [86]:
evaluate(ex)


Out[86]:
$\mathcal{E}_{[F,G]}(t,u)$

In [87]:
ex = D(commutator(F,commutator(F,commutator(F,commutator(F,G)))))*u


Out[87]:
$D_{[F,[F,[F,[F,G]]]]}\mathrm{Id}(u)$

In [88]:
ex = expand_lie_derivatives(ex)


Out[88]:
$[[[[D_{G},D_{F}],D_{F}],D_{F}],D_{F}]\mathrm{Id}(u)$

In [89]:
merge_lie_derivatives(ex)


Out[89]:
$D_{[F,[F,[F,[F,G]]]]}\mathrm{Id}(u)$

In [90]:
ex = D(F+G)*D(C(F,G))


Out[90]:
$D_{G+F}D_{[F,G]}$

In [91]:
ex = expand_lie_derivatives(ex, expand_commutators=false)


Out[91]:
$(D_{F}+D_{G})D_{[F,G]}$

In [92]:
ex = expand_lie_derivatives(ex, expand_linear_combinations=false)


Out[92]:
$(D_{F}+D_{G})[D_{G},D_{F}]$

In [93]:
ex = expand_lie_commutators(ex)


Out[93]:
$(D_{F}+D_{G})(-D_{F}D_{G}+D_{G}D_{F})$

In [94]:
expand(ex)


Out[94]:
$-D_{G}D_{F}D_{G}-D_{F}D_{F}D_{G}+D_{F}D_{G}D_{F}+D_{G}D_{G}D_{F}$

In [95]:
ex=D(3F+5commutator(F,G)+commutator(7F,commutator(3G,11H)))


Out[95]:
$D_{5[F,G]+[7F,[3G,11H]]+3F}$

In [96]:
ex1 = expand_lie_derivatives(ex)


Out[96]:
$[[11D_{H},3D_{G}],7D_{F}]+3D_{F}+5[D_{G},D_{F}]$

In [97]:
merge_lie_derivatives(ex1)


Out[97]:
$D_{5[F,G]+[7F,[3G,11H]]+3F}$

In [98]:
ex1=expand_lie_derivatives(ex, expand_commutators=false)


Out[98]:
$3D_{F}+D_{[7F,[3G,11H]]}+5D_{[F,G]}$

In [99]:
merge_lie_derivatives(ex1)


Out[99]:
$D_{5[F,G]+[7F,[3G,11H]]+3F}$

In [100]:
expand_lie_derivatives(ex, expand_linear_combinations=false)


Out[100]:
$D_{5[F,G]+[7F,[3G,11H]]+3F}$

In [101]:
@funs G1,G2,G3,G4
@t_vars t1,t2,t3,t4


Out[101]:
(t1,t2,t3,t4)

In [102]:
ex1=exp(t1,D(G1))*exp(t2,D(G2))*D(H)*exp(t3,D(G3))*exp(t4,D(G4))*v


Out[102]:
$\mathrm{e}^{t1D_{G1}}\mathrm{e}^{t2D_{G2}}D_{H}\mathrm{e}^{t3D_{G3}}\mathrm{e}^{t4D_{G4}}\mathrm{Id}(v)$

In [103]:
ex1=evaluate(ex1)


Out[103]:
$\partial_{2}\mathcal{E}_{G4}(t4,\mathcal{E}_{G3}(t3,\mathcal{E}_{G2}(t2,\mathcal{E}_{G1}(t1,v))))\cdot \partial_{2}\mathcal{E}_{G3}(t3,\mathcal{E}_{G2}(t2,\mathcal{E}_{G1}(t1,v)))\cdot H(\mathcal{E}_{G2}(t2,\mathcal{E}_{G1}(t1,v)))$

In [104]:
ex2=E(G4,t4,E(G3,t3,u),E(G3,t3,u,H(u)))


Out[104]:
$\partial_{2}\mathcal{E}_{G4}(t4,\mathcal{E}_{G3}(t3,u))\cdot \partial_{2}\mathcal{E}_{G3}(t3,u)\cdot H(u)$

In [105]:
ex2=substitute(ex2,u,E(G2,t2,E(G1,t1,v)))


Out[105]:
$\partial_{2}\mathcal{E}_{G4}(t4,\mathcal{E}_{G3}(t3,\mathcal{E}_{G2}(t2,\mathcal{E}_{G1}(t1,v))))\cdot \partial_{2}\mathcal{E}_{G3}(t3,\mathcal{E}_{G2}(t2,\mathcal{E}_{G1}(t1,v)))\cdot H(\mathcal{E}_{G2}(t2,\mathcal{E}_{G1}(t1,v)))$

In [106]:
ex1==ex2


Out[106]:
true

In [107]:
ex = exp(t,D(F))*D(F)*u


Out[107]:
$\mathrm{e}^{tD_{F}}D_{F}\mathrm{Id}(u)$

In [108]:
evaluate(ex)


Out[108]:
$F(\mathcal{E}_{F}(t,u))$

In [109]:
ex = D(F)*exp(t,D(F))*u


Out[109]:
$D_{F}\mathrm{e}^{tD_{F}}\mathrm{Id}(u)$

In [110]:
evaluate(ex)


Out[110]:
$\partial_{2}\mathcal{E}_{F}(t,u)\cdot F(u)$

In [111]:
ex = F(D(commutator(F,G))*u)


Out[111]:
$F(D_{[F,G]}\mathrm{Id}(u))$

In [112]:
ex = expand_lie_derivatives(ex)


Out[112]:
$F([D_{G},D_{F}]\mathrm{Id}(u))$

In [113]:
ex = evaluate_lie_expressions(ex)


Out[113]:
$F(-G'(u)\cdot F(u)+F'(u)\cdot G(u))$

In [114]:
ex = exp(2s+t,D(F))


Out[114]:
$\mathrm{e}^{(2s+t)D_{F}}$

In [115]:
t_derivative(ex,t)


Out[115]:
$\mathrm{e}^{(2s+t)D_{F}}D_{F}$

In [116]:
t_derivative(ex,s)


Out[116]:
$2\mathrm{e}^{(2s+t)D_{F}}D_{F}$

In [117]:
t_derivative(ex,s, to_the_right=[default])


Out[117]:
$2D_{F}\mathrm{e}^{(2s+t)D_{F}}$

In [118]:
ex = 5exp(2t,F)+7exp(3t,G)


Out[118]:
$7\mathrm{e}^{3tD_{G}}+5\mathrm{e}^{2tD_{F}}$

In [119]:
t_derivative(ex,t)


Out[119]:
$10\mathrm{e}^{2tD_{F}}D_{F}+21\mathrm{e}^{3tD_{G}}D_{G}$

In [120]:
ex = D(F)*exp(2t,D(G))*D(F)*exp(3t,D(H))*D(F)


Out[120]:
$D_{F}\mathrm{e}^{2tD_{G}}D_{F}\mathrm{e}^{3tD_{H}}D_{F}$

In [121]:
t_derivative(ex,t)


Out[121]:
$D_{F}(3\mathrm{e}^{2tD_{G}}D_{F}\mathrm{e}^{3tD_{H}}D_{H}+2\mathrm{e}^{2tD_{G}}D_{G}D_{F}\mathrm{e}^{3tD_{H}})D_{F}$

In [122]:
t_derivative(ex,t, to_the_right=[default])


Out[122]:
$D_{F}(2D_{G}\mathrm{e}^{2tD_{G}}D_{F}+3\mathrm{e}^{2tD_{G}}D_{F}D_{H})\mathrm{e}^{3tD_{H}}D_{F}$

In [123]:
ex=commutator(exp(t,F),exp(t,G))


Out[123]:
$[\mathrm{e}^{tD_{F}},\mathrm{e}^{tD_{G}}]$

In [124]:
t_derivative(ex, t)


Out[124]:
$[\mathrm{e}^{tD_{F}},\mathrm{e}^{tD_{G}}D_{G}]+[\mathrm{e}^{tD_{F}}D_{F},\mathrm{e}^{tD_{G}}]$

In [125]:
ex=D(G)*commutator(exp(t,F),D(G))*D(G)


Out[125]:
$D_{G}[\mathrm{e}^{tD_{F}},D_{G}]D_{G}$

In [126]:
t_derivative(ex, t)


Out[126]:
$D_{G}[\mathrm{e}^{tD_{F}}D_{F},D_{G}]D_{G}$

In [ ]: