In [37]:
%matplotlib inline
import pandas as pd

In [38]:
df = pd.read_csv("campus_shuttle.csv") #Isn't this easy? :D
df


Out[38]:
lat long
0 42.086155 -75.965363
1 42.089149 -75.973244
2 42.086155 -75.965363
3 42.089054 -75.974480
4 42.086155 -75.965363
5 42.089054 -75.974480
6 42.085621 -75.965408
7 42.089054 -75.974480
8 42.085621 -75.965408
9 42.088333 -75.974632
10 42.085152 -75.964981
11 42.088333 -75.974632
12 42.085152 -75.964912
13 42.087086 -75.974480
14 42.085152 -75.964912
15 42.087086 -75.974480
16 42.085510 -75.964958
17 42.086395 -75.974365
18 42.085510 -75.964958
19 42.086395 -75.974365
20 42.086090 -75.965172
21 42.086052 -75.974297
22 42.086090 -75.965172
23 42.086052 -75.974297
24 42.086445 -75.965218
25 42.086052 -75.974297
26 42.086445 -75.965218
27 42.084621 -75.974014
28 42.086445 -75.965218
29 42.084621 -75.974014
... ... ...
155234 42.083786 -75.969101
155235 42.088047 -75.963303
155236 42.083786 -75.969101
155237 42.088047 -75.963303
155238 42.083988 -75.970047
155239 42.088047 -75.963303
155240 42.083988 -75.970047
155241 42.088440 -75.962906
155242 42.083984 -75.970695
155243 42.088440 -75.962906
155244 42.083984 -75.970695
155245 42.088428 -75.962891
155246 42.083984 -75.970695
155247 42.088428 -75.962891
155248 42.084560 -75.971603
155249 42.088428 -75.962891
155250 42.084560 -75.971603
155251 42.088428 -75.962891
155252 42.085335 -75.972664
155253 42.088428 -75.962891
155254 42.085335 -75.972664
155255 42.088428 -75.962891
155256 42.085335 -75.972664
155257 42.088459 -75.962898
155258 42.086483 -75.973511
155259 42.088459 -75.962898
155260 42.086483 -75.973511
155261 42.088642 -75.962852
155262 42.087521 -75.973824
155263 42.088642 -75.962852

155264 rows × 2 columns


In [40]:
df.plot.scatter(x="long", y="lat", s=1)


Out[40]:
<matplotlib.axes._subplots.AxesSubplot at 0x117344860>

In [ ]:
"""

If you're interested in more in depth analysis check out
https://github.com/jackfischer/occt-analysis

"""