In [ ]:
In [1]:
# Importing pandas
import pandas as pd
# Import pandas Web reader - for Yahoo/Google Finance
from pandas.util.testing import assert_frame_equal
import pandas_datareader.data as web
import numpy as np
import datetime
# Importing matplotlib and setting aesthetics for plotting later.
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
plt.style.use('fivethirtyeight')
In [2]:
start = datetime.datetime(2015, 1, 1)
In [3]:
tickers_commercial = ["HGRE11.SA", "BRCR11.SA", "KNRI11.SA"]
b3_data = pd.DataFrame()
for fii in tickers_commercial:
b3_data[fii] = web.DataReader(fii, data_source='yahoo', start=start)['Close']
b3_data.head()
Out[3]:
In [4]:
def plot_normalized_returns(b3_data):
log_returns = b3_data / b3_data.iloc[0]*100
log_returns.plot(figsize=(15,5))
plt.ylabel('NORMALIZED PRICES')
plt.xlabel('DATE')
plt.show()
plot_normalized_returns(b3_data)
In [14]:
tickers_logistic = ["HGLG11.SA", "GGRC11.SA", "FIIB11.SA", "ALZR11.SA", "LVBI11.SA"]
start = datetime.datetime(2019, 1, 1)
b3_data_logistic = pd.DataFrame()
for fii in tickers_logistic:
b3_data_logistic[fii] = web.DataReader(fii, data_source='yahoo', start=start)['Close']
b3_data_logistic.head()
Out[14]:
In [15]:
plot_normalized_returns(b3_data_logistic)
In [ ]: