Predict whether income exceeds $50K/yr based on census data. Also known as "Census Income" dataset.
In [1]:
    
import shutil
import math
from datetime import datetime
import multiprocessing
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import data
from tensorflow.python.feature_column import feature_column
print(tf.__version__)
    
    
    
In [2]:
    
MODEL_NAME = 'cenus-model-02'
TRAIN_DATA_FILES_PATTERN = 'data/adult.data.csv'
TEST_DATA_FILES_PATTERN = 'data/adult.test.csv'
RESUME_TRAINING = False
PROCESS_FEATURES = True
EXTEND_FEATURE_COLUMNS = True
MULTI_THREADING = True
    
In [3]:
    
HEADER = ['age', 'workclass', 'fnlwgt', 'education', 'education_num',
               'marital_status', 'occupation', 'relationship', 'race', 'gender',
               'capital_gain', 'capital_loss', 'hours_per_week',
               'native_country', 'income_bracket']
HEADER_DEFAULTS = [[0], [''], [0], [''], [0], [''], [''], [''], [''], [''],
                       [0], [0], [0], [''], ['']]
NUMERIC_FEATURE_NAMES = ['age', 'education_num', 'capital_gain', 'capital_loss', 'hours_per_week']
CATEGORICAL_FEATURE_NAMES_WITH_VOCABULARY = {
    'gender': ['Female', 'Male'],
    
    'race': ['Amer-Indian-Eskimo', 'Asian-Pac-Islander', 'Black', 'Other', 'White'],
    
    'education': ['Bachelors', 'HS-grad', '11th', 'Masters', '9th', 'Some-college', 
                  'Assoc-acdm', 'Assoc-voc', '7th-8th', 'Doctorate', 'Prof-school', 
                  '5th-6th', '10th', '1st-4th', 'Preschool', '12th'],
    
    'marital_status': ['Married-civ-spouse', 'Divorced', 'Married-spouse-absent', 
                       'Never-married', 'Separated', 'Married-AF-spouse', 'Widowed'],
    
    'relationship': ['Husband', 'Not-in-family', 'Wife', 'Own-child', 'Unmarried', 'Other-relative'],
    
    'workclass': ['Self-emp-not-inc', 'Private', 'State-gov', 'Federal-gov', 'Local-gov', '?', 
                  'Self-emp-inc', 'Without-pay', 'Never-worked']
}
CATEGORICAL_FEATURE_NAMES_WITH_BUCKET_SIZE = {
    'occupation': 50,
    'native_country' : 100
}
CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURE_NAMES_WITH_VOCABULARY.keys()) + list(CATEGORICAL_FEATURE_NAMES_WITH_BUCKET_SIZE.keys())
FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES
TARGET_NAME = 'income_bracket'
TARGET_LABELS = ['<=50K', '>50K']
WEIGHT_COLUMN_NAME = 'fnlwgt'
UNUSED_FEATURE_NAMES = list(set(HEADER) - set(FEATURE_NAMES) - {TARGET_NAME} - {WEIGHT_COLUMN_NAME})
print("Header: {}".format(HEADER))
print("Numeric Features: {}".format(NUMERIC_FEATURE_NAMES))
print("Categorical Features: {}".format(CATEGORICAL_FEATURE_NAMES))
print("Target: {} - labels: {}".format(TARGET_NAME, TARGET_LABELS))
print("Unused Features: {}".format(UNUSED_FEATURE_NAMES))
    
    
In [4]:
    
TRAIN_DATA_SIZE = 32561
TEST_DATA_SIZE = 16278
train_data = pd.read_csv(TRAIN_DATA_FILES_PATTERN, header=None, names=HEADER )
train_data.head(10)
    
    Out[4]:
In [5]:
    
train_data.describe()
    
    Out[5]:
In [6]:
    
means = train_data[NUMERIC_FEATURE_NAMES].mean(axis=0)
stdvs = train_data[NUMERIC_FEATURE_NAMES].std(axis=0)
maxs = train_data[NUMERIC_FEATURE_NAMES].max(axis=0)
mins = train_data[NUMERIC_FEATURE_NAMES].min(axis=0)
df_stats = pd.DataFrame({"mean":means, "stdv":stdvs, "max":maxs, "min":mins})
df_stats.head(15)
    
    Out[6]:
In [7]:
    
df_stats.to_csv(path_or_buf="data/adult.stats.csv", header=True, index=True)
    
In [8]:
    
def parse_csv_row(csv_row):
    
    columns = tf.decode_csv(csv_row, record_defaults=HEADER_DEFAULTS)
    features = dict(zip(HEADER, columns))
    
    for column in UNUSED_FEATURE_NAMES:
        features.pop(column)
    
    target = features.pop(TARGET_NAME)
    return features, target
def process_features(features):
    capital_indicator = features['capital_gain'] > features['capital_loss']
    features['capital_indicator'] = tf.cast(capital_indicator, dtype=tf.int32)
    
    return features
    
In [9]:
    
def parse_label_column(label_string_tensor):
    table = tf.contrib.lookup.index_table_from_tensor(tf.constant(TARGET_LABELS))
    return table.lookup(label_string_tensor)
    
In [10]:
    
def csv_input_fn(files_name_pattern, mode=tf.estimator.ModeKeys.EVAL, 
                 skip_header_lines=0, 
                 num_epochs=None, 
                 batch_size=200):
    
    shuffle = True if mode == tf.estimator.ModeKeys.TRAIN else False
        
    num_threads = multiprocessing.cpu_count() if MULTI_THREADING else 1
     
    print("")
    print("* data input_fn:")
    print("================")
    print("Input file(s): {}".format(files_name_pattern))
    print("Batch size: {}".format(batch_size))
    print("Epoch Count: {}".format(num_epochs))
    print("Mode: {}".format(mode))
    print("Thread Count: {}".format(num_threads))
    print("Shuffle: {}".format(shuffle))
    print("================")
    print("")
    file_names = tf.matching_files(files_name_pattern)
    dataset = data.TextLineDataset(filenames=file_names)
    
    dataset = dataset.skip(skip_header_lines)
    
    if shuffle:
        dataset = dataset.shuffle(buffer_size=2 * batch_size + 1)
    
    dataset = dataset.batch(batch_size)
    dataset = dataset.map(lambda csv_row: parse_csv_row(csv_row), 
                          num_parallel_calls=num_threads)
    
    if PROCESS_FEATURES:
        dataset = dataset.map(lambda features, target: (process_features(features), target), 
                              num_parallel_calls=num_threads)
        
    dataset = dataset.repeat(num_epochs)
    iterator = dataset.make_one_shot_iterator()
    
    features, target = iterator.get_next()
    return features, parse_label_column(target)
    
In [11]:
    
features, target = csv_input_fn(files_name_pattern="")
print("Features in CSV: {}".format(list(features.keys())))
print("Target in CSV: {}".format(target))
    
    
In [12]:
    
df_stats = pd.read_csv("data/adult.stats.csv", header=0, index_col=0)
df_stats['feature_name'] = NUMERIC_FEATURE_NAMES
df_stats.head(10)
    
    Out[12]:
In [13]:
    
def extend_feature_columns(feature_columns, hparams):
    
    age_buckets = tf.feature_column.bucketized_column(
      feature_columns['age'], boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
    
    education_X_occupation = tf.feature_column.crossed_column(
     ['education', 'occupation'], hash_bucket_size=int(1e4))
    
    age_buckets_X_race = tf.feature_column.crossed_column(
     [age_buckets, feature_columns['race']], hash_bucket_size=int(1e4))
    
    native_country_X_occupation = tf.feature_column.crossed_column(
          ['native_country', 'occupation'], hash_bucket_size=int(1e4))
    
    native_country_embedded = tf.feature_column.embedding_column(
          feature_columns['native_country'], dimension=hparams.embedding_size)
    
    occupation_embedded = tf.feature_column.embedding_column(
          feature_columns['occupation'], dimension=hparams.embedding_size)
    
    education_X_occupation_embedded = tf.feature_column.embedding_column(
          education_X_occupation, dimension=hparams.embedding_size)
    
    native_country_X_occupation_embedded = tf.feature_column.embedding_column(
          native_country_X_occupation, dimension=hparams.embedding_size)
    
    
    feature_columns['age_buckets'] = age_buckets
    feature_columns['education_X_occupation'] = education_X_occupation
    feature_columns['age_buckets_X_race'] = age_buckets_X_race
    feature_columns['native_country_X_occupation'] = native_country_X_occupation
    feature_columns['native_country_embedded'] = native_country_embedded
    feature_columns['occupation_embedded'] = occupation_embedded
    feature_columns['education_X_occupation_embedded'] = education_X_occupation_embedded
    feature_columns['native_country_X_occupation_embedded'] = native_country_X_occupation_embedded
    
    return feature_columns
def standard_scaler(x, mean, stdv):
    return (x-mean)/(stdv)
def maxmin_scaler(x, max_value, min_value):
    return (x-min_value)/(max_value-min_value)  
def get_feature_columns(hparams):
    
    numeric_columns = {}
    
    for feature_name in NUMERIC_FEATURE_NAMES:
        feature_mean = df_stats[df_stats.feature_name == feature_name]['mean'].values[0]
        feature_stdv = df_stats[df_stats.feature_name == feature_name]['stdv'].values[0]
        normalizer_fn = lambda x: standard_scaler(x, feature_mean, feature_stdv)
        
        numeric_columns[feature_name] = tf.feature_column.numeric_column(feature_name, 
                                                                         normalizer_fn=normalizer_fn
                                                                        )
    CONSTRUCTED_NUMERIC_FEATURES_NAMES = []
    
    if PROCESS_FEATURES:
        for feature_name in CONSTRUCTED_NUMERIC_FEATURES_NAMES:
            numeric_columns[feature_name] = tf.feature_column.numeric_column(feature_name)
    
    categorical_column_with_vocabulary = \
        {item[0]: tf.feature_column.categorical_column_with_vocabulary_list(item[0], item[1])
         for item in CATEGORICAL_FEATURE_NAMES_WITH_VOCABULARY.items()}
        
    CONSTRUCTED_INDICATOR_FEATURES_NAMES = ['capital_indicator']
    
    categorical_column_with_identity = {}
    
    for feature_name in CONSTRUCTED_INDICATOR_FEATURES_NAMES: 
        categorical_column_with_identity[feature_name] = tf.feature_column.categorical_column_with_identity(feature_name, 
                                                                                                              num_buckets=2,
                                                                                                              default_value=0)
    categorical_column_with_hash_bucket = \
        {item[0]: tf.feature_column.categorical_column_with_hash_bucket(item[0], item[1], dtype=tf.string)
         for item in CATEGORICAL_FEATURE_NAMES_WITH_BUCKET_SIZE.items()}
        
    feature_columns = {}
    if numeric_columns is not None:
        feature_columns.update(numeric_columns)
    if categorical_column_with_vocabulary is not None:
        feature_columns.update(categorical_column_with_vocabulary)
        
    if categorical_column_with_identity is not None:
        feature_columns.update(categorical_column_with_identity)
        
    if categorical_column_with_hash_bucket is not None:
        feature_columns.update(categorical_column_with_hash_bucket)
    
    if EXTEND_FEATURE_COLUMNS:
        feature_columns = extend_feature_columns(feature_columns, hparams)
        
    return feature_columns
feature_columns = get_feature_columns(tf.contrib.training.HParams(num_buckets=5,embedding_size=3))
print("Feature Columns: {}".format(feature_columns))
    
    
In [14]:
    
def get_input_layer_feature_columns(hparams):
    
    feature_columns = list(get_feature_columns(hparams).values())
    
    dense_columns = list(
        filter(lambda column: isinstance(column, feature_column._NumericColumn) |
                              isinstance(column, feature_column._EmbeddingColumn),
               feature_columns
        )
    )
    categorical_columns = list(
        filter(lambda column: isinstance(column, feature_column._VocabularyListCategoricalColumn) |
                              isinstance(column, feature_column._BucketizedColumn),
                   feature_columns)
    )
    
    indicator_columns = list(
            map(lambda column: tf.feature_column.indicator_column(column),
                categorical_columns)
    )
    
    return dense_columns + indicator_columns
    
In [15]:
    
def model_fn(features, labels, mode, params):
    hidden_units = params.hidden_units
    output_layer_size = len(TARGET_LABELS)
    feature_columns = get_input_layer_feature_columns(hparams)
    # Create the input layers from the feature columns
    input_layer = tf.feature_column.input_layer(features=features, 
                                                feature_columns=feature_columns)
    # Create a fully-connected layer-stack based on the hidden_units in the params
    hidden_layers = tf.contrib.layers.stack(inputs= input_layer,
                                            layer= tf.contrib.layers.fully_connected,
                                            stack_args= hidden_units)
    # Connect the output layer (logits) to the hidden layer (no activation fn)
    logits = tf.layers.dense(inputs=hidden_layers, 
                             units=output_layer_size)
    # Reshape output layer to 1-dim Tensor to return predictions
    output = tf.squeeze(logits)
    # Provide an estimator spec for `ModeKeys.PREDICT`.
    if mode == tf.estimator.ModeKeys.PREDICT:
        probabilities = tf.nn.softmax(logits)
        predicted_indices = tf.argmax(probabilities, 1)
        # Convert predicted_indices back into strings
        predictions = {
            'class': tf.gather(TARGET_LABELS, predicted_indices),
            'probabilities': probabilities
        }
        export_outputs = {
            'prediction': tf.estimator.export.PredictOutput(predictions)
        }
        
        # Provide an estimator spec for `ModeKeys.PREDICT` modes.
        return tf.estimator.EstimatorSpec(mode,
                                          predictions=predictions,
                                          export_outputs=export_outputs)
    
    weights = features[WEIGHT_COLUMN_NAME]
    
    # Calculate loss using softmax cross entropy
    loss = tf.losses.sparse_softmax_cross_entropy(
        logits=logits, 
        labels=labels,
        weights=weights
    )
    
    
    tf.summary.scalar('loss', loss)
    
    
    if mode == tf.estimator.ModeKeys.TRAIN:
        
        
        
        # Learning rate scheduler using exponential decay
        initial_learning_rate = params.learning_rate
        decay_steps = params.num_epochs
        decay_rate = 0.1  # if set to 1, then no decay. Set to smaller value to reach while decaying
        
        global_step = tf.train.get_global_step()
        
        # decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
        learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step,
                                                       decay_steps, decay_rate)
        # Create Optimiser
        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
        # Create training operation
        train_op = optimizer.minimize(
            loss=loss, global_step=global_step)
        # Provide an estimator spec for `ModeKeys.TRAIN` modes.
        return tf.estimator.EstimatorSpec(mode=mode,
                                          loss=loss, 
                                          train_op=train_op)
        
    if mode == tf.estimator.ModeKeys.EVAL:
        probabilities = tf.nn.softmax(logits)
        predicted_indices = tf.argmax(probabilities, 1)
        # Return accuracy and area under ROC curve metrics
        labels_one_hot = tf.one_hot(
            labels,
            depth=len(TARGET_LABELS),
            on_value=True,
            off_value=False,
            dtype=tf.bool
        )
        
        eval_metric_ops = {
            'accuracy': tf.metrics.accuracy(labels, predicted_indices),
            'auroc': tf.metrics.auc(labels_one_hot, probabilities)
        }
        
        # Provide an estimator spec for `ModeKeys.EVAL` modes.
        return tf.estimator.EstimatorSpec(mode, 
                                          loss=loss, 
                                          eval_metric_ops=eval_metric_ops)
def create_estimator(run_config, hparams):
    estimator = tf.estimator.Estimator(model_fn=classification_model_fn, 
                                  params=hparams, 
                                  config=run_config)
    
    print("")
    print("Estimator Type: {}".format(type(estimator)))
    print("")
    return estimator
    
In [16]:
    
def create_custom_estimator(run_config, hparams):
    
    estimator = tf.estimator.Estimator(model_fn=model_fn,
                                       params=hparams,
                                       config= run_config
                                      )
    return estimator
    
In [17]:
    
TRAIN_SIZE = TRAIN_DATA_SIZE
NUM_EPOCHS = 100
BATCH_SIZE = 500
EVAL_AFTER_SEC = 60
TOTAL_STEPS = (TRAIN_SIZE/BATCH_SIZE)*NUM_EPOCHS
hparams  = tf.contrib.training.HParams(
    num_epochs = NUM_EPOCHS,
    batch_size = BATCH_SIZE,
    embedding_size = 4,
    hidden_units= [64, 32, 16],
    max_steps = TOTAL_STEPS,
    learning_rate = 0.5
)
model_dir = 'trained_models/{}'.format(MODEL_NAME)
run_config = tf.estimator.RunConfig(
    log_step_count_steps=5000,
    tf_random_seed=19830610,
    model_dir=model_dir
)
print(hparams)
print("Model Directory:", run_config.model_dir)
print("")
print("Dataset Size:", TRAIN_SIZE)
print("Batch Size:", BATCH_SIZE)
print("Steps per Epoch:",TRAIN_SIZE/BATCH_SIZE)
print("Total Steps:", TOTAL_STEPS)
print("That is 1 evaluation step after each",EVAL_AFTER_SEC," training seconds")
    
    
In [18]:
    
def json_serving_input_fn():
    
    receiver_tensor = {}
    for feature_name in FEATURE_NAMES:
        dtype = tf.float32 if feature_name in NUMERIC_FEATURE_NAMES else tf.string
        receiver_tensor[feature_name] = tf.placeholder(shape=[None], dtype=dtype)
    if PROCESS_FEATURES:
        features = process_features(receiver_tensor)
    return tf.estimator.export.ServingInputReceiver(
        features, receiver_tensor)
    
In [19]:
    
train_spec = tf.estimator.TrainSpec(
    input_fn = lambda: csv_input_fn(
        TRAIN_DATA_FILES_PATTERN,
        mode = tf.estimator.ModeKeys.TRAIN,
        num_epochs=hparams.num_epochs,
        batch_size=hparams.batch_size
    ),
    max_steps=hparams.max_steps,
    hooks=None
)
eval_spec = tf.estimator.EvalSpec(
    input_fn = lambda: csv_input_fn(
        TRAIN_DATA_FILES_PATTERN,
        mode=tf.estimator.ModeKeys.EVAL,
        num_epochs=1,
        batch_size=hparams.batch_size,
            
    ),
    exporters=[tf.estimator.LatestExporter(
        name="predict", # the name of the folder in which the model will be exported to under export
        serving_input_receiver_fn=json_serving_input_fn,
        exports_to_keep=1,
        as_text=False)],
    throttle_secs = EVAL_AFTER_SEC,
    steps=None
)
    
In [20]:
    
if not RESUME_TRAINING:
    print("Removing previous artifacts...")
    shutil.rmtree(model_dir, ignore_errors=True)
else:
    print("Resuming training...") 
    
tf.logging.set_verbosity(tf.logging.INFO)
time_start = datetime.utcnow() 
print("Experiment started at {}".format(time_start.strftime("%H:%M:%S")))
print(".......................................") 
estimator = create_custom_estimator(run_config, hparams)
tf.estimator.train_and_evaluate(
    estimator=estimator,
    train_spec=train_spec, 
    eval_spec=eval_spec
)
time_end = datetime.utcnow() 
print(".......................................")
print("Experiment finished at {}".format(time_end.strftime("%H:%M:%S")))
print("")
time_elapsed = time_end - time_start
print("Experiment elapsed time: {} seconds".format(time_elapsed.total_seconds()))
    
    
In [21]:
    
TRAIN_SIZE = TRAIN_DATA_SIZE
TEST_SIZE = TEST_DATA_SIZE
train_input_fn = lambda: csv_input_fn(files_name_pattern= TRAIN_DATA_FILES_PATTERN, 
                                      mode= tf.estimator.ModeKeys.EVAL,
                                      batch_size= TRAIN_SIZE)
test_input_fn = lambda: csv_input_fn(files_name_pattern= TEST_DATA_FILES_PATTERN, 
                                      mode= tf.estimator.ModeKeys.EVAL,
                                      batch_size= TEST_SIZE)
estimator = create_custom_estimator(run_config, hparams)
train_results = estimator.evaluate(input_fn=train_input_fn, steps=1)
print()
print("######################################################################################")
print("# Train Measures: {}".format(train_results))
print("######################################################################################")
test_results = estimator.evaluate(input_fn=test_input_fn, steps=1)
print()
print("######################################################################################")
print("# Test Measures: {}".format(test_results))
print("######################################################################################")
    
    
In [22]:
    
import itertools
predict_input_fn = lambda: csv_input_fn(TEST_DATA_FILES_PATTERN, 
                                      mode= tf.estimator.ModeKeys.PREDICT,
                                      batch_size= 10)
predictions = list(itertools.islice(estimator.predict(input_fn=predict_input_fn),10))
print("")
print("* Predicted Classes: {}".format(list(map(lambda item: item["class"]
    ,predictions))))
print("* Predicted Probabilities: {}".format(list(map(lambda item: list(item["probabilities"])
    ,predictions))))
    
    
In [23]:
    
import os
export_dir = model_dir +"/export/predict/"
saved_model_dir = export_dir + "/" + os.listdir(path=export_dir)[-1] 
print(saved_model_dir)
print("")
predictor_fn = tf.contrib.predictor.from_saved_model(
    export_dir = saved_model_dir,
    signature_def_key="prediction"
)
output = predictor_fn(
    {
        'age': [34.0],
        'workclass': ['Private'],
        'education': ['Doctorate'],
        'education_num': [10.0],
        'marital_status': ['Married-civ-spouse'],
        'occupation': ['Prof-specialty'],
        'relationship': ['Husband'],
        'race': ['White'],
        'gender': ['Male'],
        'capital_gain': [0.0], 
        'capital_loss': [0.0], 
        'hours_per_week': [40.0],
        'native_country':['Egyptian']
    }
)
print(output)