In [64]:
import numpy as np
import pickle
In [56]:
lr = 0.1
thr = 1
In [57]:
v = np.array([0.1, 0.5, 0.8, 1.2])
In [58]:
def norm(v, type:str):
return np.sqrt(np.sum(v**2)) if type=="l2" else max(abs(v))
In [59]:
# n = norm(v, "l2")
In [60]:
n = norm(v, "l1")
In [61]:
print(n)
In [84]:
d = lr * v
d *= thr/n if n > thr else 1
In [85]:
print(d)
In [86]:
d = np.load("/home/galvan/development/RNNs/models/temporal_order, min_length: 150/stats.npz")
In [87]:
d.keys()
Out[87]:
In [88]:
round(d["validation_loss"][-1].item(), 2)
Out[88]:
In [90]:
res = pickle.load(open("/home/galvan/development/RNNs/models/multi_diag_150_zara/results.pkl", "rb"))
In [93]:
res[0]
Out[93]:
In [ ]: