In [17]:
import pickle

In [18]:
file = "/home/galvan/development/RNNs/models/temporal_order_plain, min_length: 150_14_multi_diag/results.pkl"
data = pickle.load(open(file, "rb"))

In [19]:
data = sorted(data, key=lambda d: d['n_iters'])
print("n_rows:{}".format(len(data)))


n_rows:24

In [20]:
data[0]


Out[20]:
{'clip_thr': 0.7, 'id': 3, 'lr': 0.001, 'n_iters': 55000, 'std_dev': 0.05}

In [21]:
data[1]


Out[21]:
{'clip_thr': 0.7, 'id': 21, 'lr': 0.01, 'n_iters': 80800, 'std_dev': 0.05}

In [22]:
data[2]


Out[22]:
{'clip_thr': 1, 'id': 5, 'lr': 0.001, 'n_iters': 81400, 'std_dev': 0.05}

In [23]:
data[3]


Out[23]:
{'clip_thr': 1, 'id': 23, 'lr': 0.01, 'n_iters': 101000, 'std_dev': 0.05}

In [24]:
data[4]


Out[24]:
{'clip_thr': 1, 'id': 17, 'lr': 0.005, 'n_iters': 104400, 'std_dev': 0.05}

In [25]:
data[5]


Out[25]:
{'clip_thr': 1, 'id': 22, 'lr': 0.01, 'n_iters': 126600, 'std_dev': 0.01}

In [ ]: