In [6]:
# Min Max Scaler
In [1]:
import numpy as np
from sklearn import preprocessing
In [2]:
x = np.array([[1.,2.,3.],[4.,5.,6.],[7.,8.,9.]])
x
Out[2]:
In [3]:
minmax = preprocessing.MinMaxScaler(feature_range=(0,1))
minmax.fit(x).transform(x)
Out[3]:
In [8]:
# standard scaler
standard = preprocessing.StandardScaler().fit(x)
standard.transform(x)
Out[8]:
In [9]:
x
Out[9]:
In [10]:
# (x-x_mean)/x_std
x_std_0 = (1-4)/np.std(x[:, 0])
x_std_0
Out[10]:
In [ ]: