In [1]:
from bokeh.charts import Bar,output_file,show,color,Line,Scatter,Histogram,output_notebook
import numpy
from bokeh.plotting import figure
import pandas as pd
from bokeh.charts import defaults
defaults.width = 450
defaults.height = 350
In [ ]:
In [2]:
# build a dataset where multiple columns measure the same thing
data = dict(python=[2, 3, 7, 5, 26, 221, 44, 233, 254, 265, 266, 267, 120, 111],
pypy=[12, 33, 47, 15, 126, 121, 144, 233, 254, 225, 226, 267, 110, 130],
jython=[22, 43, 10, 25, 26, 101, 114, 203, 194, 215, 201, 227, 139, 160],
test=['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'bar']
)
# create a line chart where each column of measures receives a unique color and dash style
line = Line(data, y=['python', 'pypy', 'jython'],
dash=['python', 'pypy', 'jython'],
color=['python', 'pypy', 'jython'],
title="Interpreter Sample Data",
ylabel='Duration',
legend=True)
output_file("line_single.html", title="line_single.py example")
show(line)
In [3]:
hist = Histogram(numpy.random.random(size=(1000)),
xgrid=True,
ygrid=True,
bins=30,
yscale='Linear')#,color='#aa4444')
output_file("histogram.html", title="Histogram example")
show(hist)
In [ ]:
In [5]:
from bokeh.charts import Histogram, output_file, show
from bokeh.sampledata.autompg import autompg as df
p = Histogram(df, values='hp', color='navy', title="HP Distribution")
output_file("histogram_color.html")
show(p)
In [6]:
# create a new plot with default tools, using figure
p = figure(plot_width=400, plot_height=400,title="Epoch time vs Batch Size") #x_range=[0,10], y_range=[0,10]
p.outline_line_width = 7
p.outline_line_alpha = 0.3
#p.outline_line_color = "navy"
# change just some things about the x-axes
p.xaxis.axis_label = "Temp"
p.xaxis.axis_line_width = 3
#p.xaxis.axis_line_color = "red"
# change just some things about the y-axes
p.yaxis.axis_label = "Pressure"
#p.yaxis.major_label_text_color = "orange"
p.yaxis.major_label_orientation = "vertical"
# change things on all axes
p.axis.minor_tick_in = -3
p.axis.minor_tick_out = 6
p.legend.location = "bottom_left"
# add a line renderer
p.line([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], line_width=2) #line_dash="4 4", line_width=1, color='gray',legend="3*sin(x)"
#line_color, line_alpha, line_width and line_dash.marker='cyl', color='cyl',
## put all the plots in a gridplot
p = gridplot([[p1, p2, p3]], toolbar_location=None)
In [7]:
scatter = p.scatter(x=numpy.random.random(size=(100)),
y = numpy.random.random(size=(100)),size=15,
line_color="navy",
fill_color="orange",
fill_alpha=0.5,
marker='square')
# keep a reference to the returned GlyphRenderer
r = p.circle([1,2,3,4,5], [2,5,8,2,7])
r.glyph.size = 50
r.glyph.fill_alpha = 0.2
r.glyph.line_color = "firebrick"
r.glyph.line_dash = [5, 1]
r.glyph.line_width = 2
show(p)
In [60]:
In [ ]:
TExt
fill_color and fill_alpha.
Text Properties
Set the visual appearance of lines of text. The most common are text_font, text_font_size, text_color, and text_alpha.