In [1]:
import scipy as sp
from scipy.stats import chisquare
from scipy.stats import binom_test
In [2]:
import pandas as pd
import numpy as np
In [4]:
rts_colony = pd.read_csv('C:/Users/courtney/Documents/Schoolwork/Stat_215a/Bishayee Colony Counts 10.27.97-3.8.01.csv',
skiprows=2,usecols=range(3,7),na_values=' ')
rts_colony['col_min'] = rts_colony.apply(lambda row: min(row['col1'],row['col2'],row['col3']) ,axis=1)
rts_colony['col_max'] = rts_colony.apply(lambda row: max(row['col1'],row['col2'],row['col3']) ,axis=1)
rts_colony['col_gap'] = rts_colony['col_max']-rts_colony['col_min']
rts_colony['has_na'] = ((pd.isnull(rts_colony['col1'])) | (pd.isnull(rts_colony['col2'])) | (pd.isnull(rts_colony['col3'])))
total = np.sum(rts_colony['has_na'] == False)
complete = np.sum((rts_colony['has_na'] == False) & (rts_colony['col_gap'] >= 2))
no_mean = sum(((rts_colony['col1'] == round(rts_colony['average'])) | (rts_colony['col2'] == round(rts_colony['average'])) | (rts_colony['col3'] == round(rts_colony['average']))) & (rts_colony['col_gap'] >= 2) & (rts_colony['has_na'] == False))
print(complete, total, no_mean)
In [5]:
rts_coulter = pd.read_csv('C:/Users/courtney/Documents/Schoolwork/Stat_215a/Bishayee Coulter Counts.10.20.97-7.16.01.csv',
skiprows=1,usecols=range(2,6),na_values=' ')
rts_coulter['col_min'] = rts_coulter.apply(lambda row: min(row['Count 1'],row['Count 2'],row['Count 3']) ,axis=1)
rts_coulter['col_max'] = rts_coulter.apply(lambda row: max(row['Count 1'],row['Count 2'],row['Count 3']) ,axis=1)
rts_coulter['col_gap'] = rts_coulter['col_max']-rts_coulter['col_min']
rts_coulter['has_na'] = ((pd.isnull(rts_coulter['Count 1'])) | (pd.isnull(rts_coulter['Count 2'])) | (pd.isnull(rts_coulter['Count 3'])))
total = np.sum(rts_coulter['has_na'] == False)
complete = np.sum((rts_coulter['has_na'] == False) & (rts_coulter['col_gap'] >= 2))
no_mean = sum(((rts_coulter['Count 1'] == round(rts_coulter['Average'])) | (rts_coulter['Count 2'] == round(rts_coulter['Average'])) | (rts_coulter['Count 3'] == round(rts_coulter['Average']))) & (rts_coulter['col_gap'] >= 2) & (rts_coulter['has_na'] == False))
print(complete, total, no_mean)
In [6]:
others_colony = pd.read_csv('C:/Users/courtney/Documents/Schoolwork/Stat_215a/Other Investigators in Lab.Colony Counts.4.23.92-11.27.02.csv',
skiprows=1,usecols=range(3,7),na_values=' ')
others_colony['col_min'] = others_colony.apply(lambda row: min(row['col1'],row['col2'],row['col3']) ,axis=1)
others_colony['col_max'] = others_colony.apply(lambda row: max(row['col1'],row['col2'],row['col3']) ,axis=1)
others_colony['col_gap'] = others_colony['col_max'] - others_colony['col_min']
others_colony['has_na'] = ((pd.isnull(others_colony['col1'])) | (pd.isnull(others_colony['col2'])) | (pd.isnull(others_colony['col3'])))
total = np.sum(others_colony['has_na'] == False)
complete = np.sum((others_colony['has_na'] == False) & (others_colony['col_gap'] >= 2))
no_mean = sum(((others_colony['col1'] == round(others_colony['average'])) | (others_colony['col2'] == round(others_colony['average'])) | (others_colony['col3'] == round(others_colony['average']))) & (others_colony['col_gap'] >= 2) & (others_colony['has_na'] == False))
print(complete, total, no_mean)
In [7]:
others_coulter = pd.read_csv('C:/Users/courtney/Documents/Schoolwork/Stat_215a/Other Investigators in Lab.Coulter Counts.4.15.92-5.21.05.csv',
skiprows=1,na_values=' ')
others_coulter['col_min'] = others_coulter.apply(lambda row: min(row['Coul 1'],row['Coul 2'],row['Coul 3']) ,axis=1)
others_coulter['col_max'] = others_coulter.apply(lambda row: max(row['Coul 1'],row['Coul 2'],row['Coul 3']) ,axis=1)
others_coulter['col_gap'] = others_coulter['col_max'] - others_coulter['col_min']
others_coulter['has_na'] = ((pd.isnull(others_coulter['Coul 1'])) | (pd.isnull(others_coulter['Coul 2'])) | (pd.isnull(others_coulter['Coul 3'])))
total = np.sum(others_coulter['has_na'] == False)
complete = np.sum((others_coulter['has_na'] == False) & (others_coulter['col_gap'] >= 2))
no_mean = sum(((others_coulter['Coul 1'] == round(others_coulter['Average'])) | (others_coulter['Coul 2'] == round(others_coulter['Average'])) | (others_coulter['Coul 3'] == round(others_coulter['Average']))) & (others_coulter['col_gap'] >= 2) & (others_coulter['has_na'] == False))
print(complete, total, no_mean)
In [8]:
Lab1_colony = pd.read_csv('C:/Users/courtney/Documents/Schoolwork/Stat_215a/Outside Lab 1.Coulter Counts.6.7.91-4.9.99.csv',
na_values=' ')
Lab1_colony['col_min'] = Lab1_colony.apply(lambda row: min(row['Unnamed: 1'],row['Unnamed: 2'],row['Unnamed: 3']) ,axis=1)
Lab1_colony['col_max'] = Lab1_colony.apply(lambda row: max(row['Unnamed: 1'],row['Unnamed: 2'],row['Unnamed: 3']) ,axis=1)
Lab1_colony['col_gap'] = Lab1_colony['col_max'] - Lab1_colony['col_min']
Lab1_colony['has_na'] = ((pd.isnull(Lab1_colony['Unnamed: 1'])) | (pd.isnull(Lab1_colony['Unnamed: 2'])) | (pd.isnull(Lab1_colony['Unnamed: 3'])))
total = np.sum(Lab1_colony['has_na'] == False)
complete = np.sum((Lab1_colony['has_na'] == False) & (Lab1_colony['col_gap'] >= 2))
no_mean = sum(((Lab1_colony['Unnamed: 1'] == round(Lab1_colony['Unnamed: 4'])) | (Lab1_colony['Unnamed: 2'] == round(Lab1_colony['Unnamed: 4'])) | (Lab1_colony['Unnamed: 3'] == round(Lab1_colony['Unnamed: 4']))) & (Lab1_colony['col_gap'] >= 2) & (Lab1_colony['has_na'] == False))
print(complete, total, no_mean)
In [9]:
Lab2_colony = pd.read_csv('C:/Users/courtney/Documents/Schoolwork/Stat_215a/Outside Lab 2.Coulter Counts.6.6.08-7.7.08.csv',
na_values=' ',skiprows=1)
Lab2_colony['col_min'] = Lab2_colony.apply(lambda row: min(row['Count 1'],row['Count 2'],row['Count 3']) ,axis=1)
Lab2_colony['col_max'] = Lab2_colony.apply(lambda row: max(row['Count 1'],row['Count 2'],row['Count 3']) ,axis=1)
Lab2_colony['col_gap'] = Lab2_colony['col_max'] - Lab2_colony['col_min']
Lab2_colony['has_na'] = ((pd.isnull(Lab2_colony['Count 1'])) | (pd.isnull(Lab2_colony['Count 2'])) | (pd.isnull(Lab2_colony['Count 3'])))
total = np.sum(Lab2_colony['has_na'] == False)
complete = np.sum((Lab2_colony['has_na'] == False) & (Lab2_colony['col_gap'] >= 2))
no_mean = sum(((Lab2_colony['Count 1'] == round(Lab2_colony['Average'])) | (Lab2_colony['Count 2'] == round(Lab2_colony['Average'])) | (Lab2_colony['Count 3'] == round(Lab2_colony['Average']))) & (Lab2_colony['col_gap'] >= 2) & (Lab2_colony['has_na'] == False))
print(complete, total, no_mean)
In [10]:
Lab3_colony = pd.read_csv('C:/Users/courtney/Documents/Schoolwork/Stat_215a/Outside Lab 3.Colony Counts.2.4.10-5.21.12.csv',
na_values=' ',skiprows=1)
Lab3_colony['col_min'] = Lab3_colony.apply(lambda row: min(row['c1'],row['c2'],row['c3']) ,axis=1)
Lab3_colony['col_max'] = Lab3_colony.apply(lambda row: max(row['c1'],row['c2'],row['c3']) ,axis=1)
Lab3_colony['col_gap'] = Lab3_colony['col_max'] - Lab3_colony['col_min']
Lab3_colony['has_na'] = ((pd.isnull(Lab3_colony['c1'])) | (pd.isnull(Lab3_colony['c2'])) | (pd.isnull(Lab3_colony['c3'])))
total = np.sum(Lab3_colony['has_na'] == False)
complete = np.sum((Lab3_colony['has_na'] == False) & (Lab3_colony['col_gap'] >= 2))
no_mean = sum(((Lab3_colony['c1'] == round(Lab3_colony['average'])) | (Lab3_colony['c2'] == round(Lab3_colony['average'])) | (Lab3_colony['c3'] == round(Lab3_colony['average']))) & (Lab3_colony['col_gap'] >= 2) & (Lab3_colony['has_na'] == False))
print(complete, total, no_mean)
In [11]:
# Calculate the p-value for Hypothesis 1. For now I just used the numbers from their paper for x and p
H1_pvalue = binom_test(x=690,n=1343,p=0.42,alternative='greater')
print(H1_pvalue)
In [12]:
# re-creat Table 3 in the paper, RTS COULTER
rts_coulter_col1_terminal = rts_coulter['Count 1']
rts_coulter_col1_terminal = rts_coulter_col1_terminal[pd.notnull(rts_coulter_col1_terminal)]
rts_coulter_col1_terminal= rts_coulter_col1_terminal.astype(str).str[-1:].astype(int)
rts_coulter_col2_terminal = rts_coulter['Count 2']
rts_coulter_col2_terminal = rts_coulter_col2_terminal[pd.notnull(rts_coulter_col2_terminal)]
rts_coulter_col2_terminal = rts_coulter_col2_terminal.astype(str).str[-1:].astype(int)
rts_coulter_col3_terminal = rts_coulter['Count 3']
rts_coulter_col3_terminal = rts_coulter_col3_terminal[pd.notnull(rts_coulter_col3_terminal)]
rts_coulter_col3_terminal = rts_coulter_col3_terminal.astype(str).str[:-2].str[-1:].astype(int)
rts_coulter_terminal= pd.concat([rts_coulter_col1_terminal,rts_coulter_col2_terminal,rts_coulter_col3_terminal])
chi_pvalue_rts_coulter = chisquare(f_obs=rts_coulter_terminal.value_counts() )
print(chi_pvalue_rts_coulter,rts_coulter_terminal.value_counts(),len(rts_coulter_terminal))
In [13]:
# re-creat Table 3 in the paper, RTS COLONY
rts_colony_col1_terminal = rts_colony['col1']
rts_colony_col1_terminal = rts_colony_col1_terminal[pd.notnull(rts_colony_col1_terminal)]
rts_colony_col1_terminal = rts_colony_col1_terminal.astype(str).str[-1:].astype(int)
rts_colony_col2_terminal = rts_colony['col2']
rts_colony_col2_terminal = rts_colony_col2_terminal[pd.notnull(rts_colony_col2_terminal)]
rts_colony_col2_terminal = rts_colony_col2_terminal.astype(str).str[-1:].astype(int)
rts_colony_col3_terminal = rts_colony['col3']
rts_colony_col3_terminal = rts_colony_col3_terminal[pd.notnull(rts_colony_col3_terminal)]
rts_colony_col3_terminal = rts_colony_col3_terminal.astype(str).str[:-2].str[-1:].astype(int)
rts_colony_terminal= pd.concat([rts_colony_col1_terminal,rts_colony_col2_terminal,rts_colony_col3_terminal])
rts_colony_terminal= pd.concat([rts_colony_col1_terminal,rts_colony_col2_terminal,rts_colony_col3_terminal])
chi_pvalue_rts_colony = chisquare(f_obs=rts_colony_terminal.value_counts())
print(chi_pvalue_rts_colony,rts_colony_terminal.value_counts())
len(rts_colony_terminal)
Out[13]:
In [14]:
# re-creat Table 3 in the paper, OTHERS COLONY
others_colony_col1_terminal = others_colony['col1']
others_colony_col1_terminal = others_colony_col1_terminal[pd.notnull(others_colony_col1_terminal)]
others_colony_col1_terminal = others_colony_col1_terminal.astype(str).str[-1:].astype(int)
others_colony_col2_terminal = others_colony['col2']
others_colony_col2_terminal = others_colony_col2_terminal[pd.notnull(others_colony_col2_terminal)]
others_colony_col2_terminal = others_colony_col2_terminal.astype(str).str[:-2].str[-1:].astype(int)
others_colony_col3_terminal = others_colony['col3']
others_colony_col3_terminal = others_colony_col3_terminal[pd.notnull(others_colony_col3_terminal)]
others_colony_col3_terminal = others_colony_col3_terminal.astype(str).str[:-2].str[-1:].astype(int)
others_colony_terminal= pd.concat([others_colony_col1_terminal,others_colony_col2_terminal,others_colony_col3_terminal])
chi_pvalue_others_colony = chisquare(f_obs=others_colony_terminal.value_counts())
print(chi_pvalue_others_colony,others_colony_terminal.value_counts(),len(others_colony_terminal))
In [ ]:
# re-creat Table 3 in the paper, OTHERS COULTER
others_coulter_col1_terminal = others_coulter['Coul 1']
others_coulter_col1_terminal = others_coulter_col1_terminal[pd.notnull(others_coulter_col1_terminal)]
others_coulter_col1_terminal = others_coulter_col1_terminal.astype(str).str[:-2].str[-1:].astype(int)
others_coulter_col2_terminal = others_coulter['Coul 2']
others_coulter_col2_terminal = others_coulter_col2_terminal[pd.notnull(others_coulter_col2_terminal)]
others_coulter_col2_terminal = others_coulter_col2_terminal.astype(str).str[:-2].str[-1:].astype(int)
others_coulter_col3_terminal = others_coulter['Coul 3']
others_coulter_col3_terminal = others_coulter_col3_terminal[pd.notnull(others_coulter_col3_terminal)]
others_coulter_col3_terminal = others_coulter_col3_terminal.astype(str).str[:-2].str[-1:].astype(int)
others_coulter_terminal= pd.concat([others_coulter_col1_terminal,others_coulter_col2_terminal,others_coulter_col3_terminal])
chi_pvalue_others_coulter = chisquare(f_obs=others_coulter_terminal.value_counts())
print(chi_pvalue_others_coulter,others_coulter_terminal.value_counts(),len(others_coulter_terminal))
In [38]:
# re-creat Table 3 in the paper, Lab 1 Colony
Lab1_colony_col1_terminal = Lab1_colony['Unnamed: 1']
Lab1_colony_col1_terminal = Lab1_colony_col1_terminal[pd.notnull(Lab1_colony_col1_terminal)]
Lab1_colony_col1_terminal = Lab1_colony_col1_terminal.astype(str).str[-1:].astype(int)
Lab1_colony_col2_terminal = Lab1_colony['Unnamed: 2']
Lab1_colony_col2_terminal = Lab1_colony_col2_terminal[pd.notnull(Lab1_colony_col2_terminal)]
Lab1_colony_col2_terminal = Lab1_colony_col2_terminal.astype(str).str[-1:].astype(int)
Lab1_colony_col3_terminal = Lab1_colony['Unnamed: 3']
Lab1_colony_col3_terminal = Lab1_colony_col3_terminal[pd.notnull(Lab1_colony_col3_terminal)]
Lab1_colony_col3_terminal = Lab1_colony_col3_terminal.astype(str).str[:-2].str[-1:].astype(int)
Lab1_colony_terminal= pd.concat([Lab1_colony_col1_terminal,Lab1_colony_col2_terminal,Lab1_colony_col3_terminal])
chi_pvalue_Lab1_colony = chisquare(f_obs=Lab1_colony_terminal.value_counts())
print(chi_pvalue_Lab1_colony,Lab1_colony_terminal.value_counts(),len(Lab1_colony_terminal))
In [44]:
# re-creat Table 3 in the paper, Lab 2 Colony
Lab2_colony_col1_terminal = Lab2_colony['Count 1']
Lab2_colony_col1_terminal = Lab2_colony_col1_terminal[pd.notnull(Lab2_colony_col1_terminal)]
Lab2_colony_col1_terminal = Lab2_colony_col1_terminal.astype(str).str[-1:].astype(int)
Lab2_colony_col2_terminal = Lab2_colony['Count 2']
Lab2_colony_col2_terminal = Lab2_colony_col2_terminal[pd.notnull(Lab2_colony_col2_terminal)]
Lab2_colony_col2_terminal = Lab2_colony_col2_terminal.astype(str).str[-1:].astype(int)
Lab2_colony_col3_terminal = Lab2_colony['Count 3']
Lab2_colony_col3_terminal = Lab2_colony_col3_terminal[pd.notnull(Lab2_colony_col3_terminal)]
Lab2_colony_col3_terminal = Lab2_colony_col3_terminal.astype(str).str[-1:].astype(int)
Lab2_colony_terminal= pd.concat([Lab2_colony_col1_terminal,Lab2_colony_col2_terminal,Lab2_colony_col3_terminal])
chi_pvalue_Lab2_colony = chisquare(f_obs=Lab2_colony_terminal.value_counts())
print(chi_pvalue_Lab2_colony,Lab2_colony_terminal.value_counts(),len(Lab2_colony_terminal))
In [49]:
# re-creat Table 3 in the paper, Lab 3 Colony
Lab3_colony_col1_terminal = Lab3_colony['c1']
Lab3_colony_col1_terminal = Lab3_colony_col1_terminal[pd.notnull(Lab3_colony_col1_terminal)]
Lab3_colony_col1_terminal = Lab3_colony_col1_terminal.astype(str).str[-1:].astype(int)
Lab3_colony_col2_terminal = Lab3_colony['c2']
Lab3_colony_col2_terminal = Lab3_colony_col2_terminal[pd.notnull(Lab3_colony_col2_terminal)]
Lab3_colony_col2_terminal = Lab3_colony_col2_terminal.astype(str).str[-1:].astype(int)
Lab3_colony_col3_terminal = Lab3_colony['c3']
Lab3_colony_col3_terminal = Lab3_colony_col3_terminal[pd.notnull(Lab3_colony_col3_terminal)]
Lab3_colony_col3_terminal = Lab3_colony_col3_terminal.astype(str).str[-1:].astype(int)
Lab3_colony_terminal= pd.concat([Lab3_colony_col1_terminal,Lab3_colony_col2_terminal,Lab3_colony_col3_terminal])
chi_pvalue_Lab3_colony = chisquare(f_obs=Lab3_colony_terminal.value_counts())
print(chi_pvalue_Lab3_colony,Lab3_colony_terminal.value_counts(),len(Lab2_colony_terminal))
In [29]:
## Binomial test for last two digits in RTS coulter data
rts_coulter_col1_terminal = rts_coulter['Count 1']
rts_coulter_col1_terminal = rts_coulter_col1_terminal[pd.notnull(rts_coulter_col1_terminal)]
rts_coulter_col1_terminal2= rts_coulter_col1_terminal.astype(str).str[-2:].astype(int)
x1 = np.sum((rts_coulter_col1_terminal2 == 00) | (rts_coulter_col1_terminal2 == 11) | (rts_coulter_col1_terminal2 == 22) | (rts_coulter_col1_terminal2 == 33) | (rts_coulter_col1_terminal2 == 44) | (rts_coulter_col1_terminal2 == 55) | (rts_coulter_col1_terminal2 == 66) | (rts_coulter_col1_terminal2 == 77) | (rts_coulter_col1_terminal2 == 88) | (rts_coulter_col1_terminal2 == 99))
print(x1)
rts_coulter_col2_terminal = rts_coulter['Count 2']
rts_coulter_col2_terminal = rts_coulter_col2_terminal[pd.notnull(rts_coulter_col2_terminal)]
rts_coulter_col2_terminal2= rts_coulter_col2_terminal.astype(str).str[-2:].astype(int)
x2 = np.sum((rts_coulter_col2_terminal2 == 00) | (rts_coulter_col2_terminal2 == 11) | (rts_coulter_col2_terminal2 == 22) | (rts_coulter_col2_terminal2 == 33) | (rts_coulter_col2_terminal2 == 44) | (rts_coulter_col2_terminal2 == 55) | (rts_coulter_col2_terminal2 == 66) | (rts_coulter_col2_terminal2 == 77) | (rts_coulter_col2_terminal2 == 88) | (rts_coulter_col2_terminal2 == 99))
print(x2)
rts_coulter_col3_terminal = rts_coulter['Count 3']
rts_coulter_col3_terminal = rts_coulter_col3_terminal[pd.notnull(rts_coulter_col3_terminal)]
rts_coulter_col3_terminal2 = rts_coulter_col3_terminal.astype(str).str[:-2].str[-2:].astype(int)
x3 = np.sum((rts_coulter_col3_terminal2 == 00) | (rts_coulter_col3_terminal2 == 11) | (rts_coulter_col3_terminal2 == 22) | (rts_coulter_col3_terminal2 == 33) | (rts_coulter_col3_terminal2 == 44) | (rts_coulter_col3_terminal2 == 55) | (rts_coulter_col3_terminal2 == 66) | (rts_coulter_col3_terminal2 == 77) | (rts_coulter_col3_terminal2 == 88) | (rts_coulter_col3_terminal2 == 99))
print(x3)
myx = (x1+x2+x3)
myn = (len(rts_coulter_col1_terminal2) + len(rts_coulter_col2_terminal2) + len(rts_coulter_col3_terminal2))
print(myn,myx)
In [16]:
Terminal2_pvalue = binom_test(x=myx,n=myn,p=0.1,alternative='greater')
print(Terminal2_pvalue)
In [27]:
## Binomial test for last two digits in Others Coulter data
others_coulter_col1_terminal = others_coulter['Coul 1']
others_coulter_col1_terminal = others_coulter_col1_terminal[pd.notnull(others_coulter_col1_terminal)]
others_coulter_col1_terminal2= others_coulter_col1_terminal.astype(str).str[:-2].str[-2:].astype(int)
x1 = np.sum((others_coulter_col1_terminal2 == 00) | (others_coulter_col1_terminal2 == 11) | (others_coulter_col1_terminal2 == 22) | (others_coulter_col1_terminal2 == 33) | (others_coulter_col1_terminal2 == 44) | (others_coulter_col1_terminal2 == 55) | (others_coulter_col1_terminal2 == 66) | (others_coulter_col1_terminal2 == 77) | (others_coulter_col1_terminal2 == 88) | (others_coulter_col1_terminal2 == 99))
print(x1)
others_coulter_col2_terminal = others_coulter['Coul 2']
others_coulter_col2_terminal = others_coulter_col2_terminal[pd.notnull(others_coulter_col2_terminal)]
others_coulter_col2_terminal2= others_coulter_col2_terminal.astype(str).str[:-2].str[-2:].astype(int)
x2 = np.sum((others_coulter_col2_terminal2 == 00) | (others_coulter_col2_terminal2 == 11) | (others_coulter_col2_terminal2 == 22) | (others_coulter_col2_terminal2 == 33) | (others_coulter_col2_terminal2 == 44) | (others_coulter_col2_terminal2 == 55) | (others_coulter_col2_terminal2 == 66) | (others_coulter_col2_terminal2 == 77) | (others_coulter_col2_terminal2 == 88) | (others_coulter_col2_terminal2 == 99))
print(x2)
others_coulter_col3_terminal = others_coulter['Coul 3']
others_coulter_col3_terminal = others_coulter_col3_terminal[pd.notnull(others_coulter_col3_terminal)]
others_coulter_col3_terminal2 = others_coulter_col3_terminal.astype(str).str[:-2].str[-2:].astype(int)
x3 = np.sum((others_coulter_col3_terminal2 == 00) | (others_coulter_col3_terminal2 == 11) | (others_coulter_col3_terminal2 == 22) | (others_coulter_col3_terminal2 == 33) | (others_coulter_col3_terminal2 == 44) | (others_coulter_col3_terminal2 == 55) | (others_coulter_col3_terminal2 == 66) | (others_coulter_col3_terminal2 == 77) | (others_coulter_col3_terminal2 == 88) | (others_coulter_col3_terminal2 == 99))
print(x3)
myx = (x1+x2+x3)
myn = (len(others_coulter_col1_terminal2) + len(others_coulter_col2_terminal2) + len(others_coulter_col3_terminal2))
print(myn,myx)
In [28]:
Terminal2_pvalue_others_coulter = binom_test(x=myx,n=myn,p=0.1,alternative='greater')
print(Terminal2_pvalue_others_coulter)
In [ ]: