In [2]:
import sys, getopt
#import cpickle as pickle
import argparse
import sys
import os
import time
import numpy as np
from PIL import Image
import lasagne
import nolearn
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import matplotlib.pyplot as pyplot
plt.style.use('ggplot')
In [13]:
fnp = np.load('./Miscellaneous/exp_SR_wo-UL_250117.npz')
print(fnp.keys())
In [14]:
AccTest = getattr( fnp.f, 'ArrayAccTest').T
AceTest = getattr( fnp.f, 'ArrayAceTest').T
MseTest = getattr( fnp.f, 'ArrayMseTest').T
In [18]:
labcols=[100,90,80,70,60,50,40,30,20,10,0]
dfAccTest = pd.DataFrame( AccTest, columns=labcols )
dfAceTest = pd.DataFrame( AceTest, columns=labcols )
dfMseTest = pd.DataFrame( MseTest, columns=labcols )
In [20]:
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(10, 10), sharey=False, sharex=True)
dfAccTest.plot.box(ax=axes[2], title='Classification accuracy')
dfAceTest.plot.box(ax=axes[0], title='Averaged CrossEntropy of classifier')
dfMseTest.plot.box(ax=axes[1], title='Mean Squared Error of the Convolutional Autoencoder')
plt.show()
In [5]:
genRanImg = np.zeros([1000,1000])
imgSizeX = 304
imgSizeY = 128
In [7]:
p = np.random.choice( genRanImg , replace=False)
In [64]:
sizeX = 50
sizeY = 500
I = np.zeros(sizeX*sizeY)
seqA = np.arange(10,30)
seqB = np.arange(10,150)
for x in seqA:
for y in seqB:
pos =(x)*sizeY+(y)
#print(x, y, pos, (pos-(pos%sizeY))/sizeY,(pos%sizeY) )
I[pos] = 255
plt.imshow(I.reshape(sizeX,sizeY))
plt.show()
In [16]:
np.arange(1,15)
Out[16]:
In [35]:
I[1409] = 0
In [ ]: