In [47]:
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
%matplotlib inline
import pandas as pd
surveys_df = pd.read_csv("surveys.csv")
surveys_1 = surveys_df[surveys_df.month == 1]
surveys_2 = surveys_df[surveys_df.month == 2]
surveys_2


Out[47]:
record_id month day year plot_id species_id sex hindfoot_length weight
583 584 2 18 1978 3 OT M NaN 24.0
584 585 2 18 1978 2 DS M 53.0 157.0
585 586 2 18 1978 13 DM M 35.0 51.0
586 587 2 18 1978 2 OX NaN NaN NaN
587 588 2 18 1978 2 NL M NaN 218.0
588 589 2 18 1978 20 DM F 39.0 38.0
589 590 2 18 1978 2 PF F 16.0 7.0
590 591 2 18 1978 6 DM F 38.0 NaN
591 592 2 18 1978 22 DM M 39.0 45.0
592 593 2 18 1978 2 DM M 38.0 52.0
593 594 2 18 1978 9 DM M 38.0 50.0
594 595 2 18 1978 2 DM M 37.0 51.0
595 596 2 18 1978 9 DS F NaN 126.0
596 597 2 18 1978 20 DM F 33.0 39.0
597 598 2 18 1978 2 OT F NaN 24.0
598 599 2 18 1978 3 OT F 15.0 23.0
599 600 2 18 1978 2 DM F 37.0 40.0
600 601 2 18 1978 2 DM M 36.0 41.0
601 602 2 18 1978 13 DM M 37.0 46.0
602 603 2 18 1978 2 OT M NaN 25.0
603 604 2 18 1978 2 PE M 22.0 25.0
604 605 2 18 1978 19 NaN NaN NaN NaN
605 606 2 18 1978 23 NaN NaN NaN NaN
606 607 2 19 1978 5 DM F 36.0 39.0
607 608 2 19 1978 17 DM F 34.0 42.0
608 609 2 19 1978 4 DS F 49.0 NaN
609 610 2 19 1978 17 DM M 37.0 39.0
610 611 2 19 1978 21 OT F 20.0 23.0
611 612 2 19 1978 4 DS NaN NaN NaN
612 613 2 19 1978 5 DS M 49.0 NaN
... ... ... ... ... ... ... ... ... ...
33540 33541 2 10 2002 13 PB M 29.0 49.0
33541 33542 2 10 2002 13 PP F 21.0 15.0
33542 33543 2 10 2002 14 DM M 36.0 48.0
33543 33544 2 10 2002 14 AH NaN NaN NaN
33544 33545 2 10 2002 14 DM F 35.0 39.0
33545 33546 2 10 2002 14 OT F 21.0 21.0
33546 33547 2 10 2002 14 DM F 36.0 44.0
33547 33548 2 10 2002 14 DM F 36.0 46.0
33548 33549 2 10 2002 14 NL M 33.0 222.0
33549 33550 2 10 2002 15 PB F 25.0 31.0
33550 33551 2 10 2002 15 RM F 17.0 7.0
33551 33552 2 10 2002 15 AH NaN NaN NaN
33552 33553 2 10 2002 15 AH NaN NaN NaN
33553 33554 2 10 2002 15 RM F 17.0 10.0
33554 33555 2 10 2002 15 PB M 27.0 45.0
33555 33556 2 10 2002 5 RO M 15.0 9.0
33556 33557 2 10 2002 5 RM F 17.0 9.0
33557 33558 2 10 2002 16 PB F 26.0 25.0
33558 33559 2 10 2002 16 DM M 36.0 38.0
33559 33560 2 10 2002 16 DO F 36.0 51.0
33560 33561 2 10 2002 10 RM F 17.0 8.0
33561 33562 2 10 2002 10 DO F 35.0 50.0
33562 33563 2 10 2002 10 DO M 34.0 52.0
33563 33564 2 10 2002 10 DO M 38.0 51.0
33564 33565 2 10 2002 10 RO F 16.0 8.0
33565 33566 2 10 2002 7 DM M 35.0 42.0
33566 33567 2 10 2002 7 DO M 36.0 62.0
33567 33568 2 10 2002 7 DO F 37.0 55.0
33568 33569 2 10 2002 7 DO F 38.0 47.0
33569 33570 2 10 2002 7 DO F 35.0 54.0

2796 rows × 9 columns


In [62]:
plt.hist(surveys_1['plot_id'])
plt.plot(surveys_1['plot_id'].mean(),'--')
plt.show()



In [63]:
plt.figure(1)
plt.subplot(1,1,1)
plt.plot(surveys_1['plot_id'])
plt.xlabel('record')
plt.ylabel('plot_id')
plt.title('oh')
plt.plot(surveys_2['plot_id'])
plt.show()



In [ ]: