In [1]:
import pandas as pd
import MySQLdb
In [47]:
server = 'ec2-54-149-163-97.us-west-2.compute.amazonaws.com'
In [52]:
db = MySQLdb.connect(server, 'root','test1234', 'sakila')
In [50]:
country_df = pd.read_sql("SELECT * FROM country;", db)
city_df = pd.read_sql("SELECT * FROM city;", db)
In [14]:
country_df.columns
Out[14]:
In [15]:
city_df.columns
Out[15]:
In [28]:
# countrycode 와 code
city_df.merge(country_df, left_on = "CountryCode", right_on = "Code")[["Name_x","Name_y"]].head()
Out[28]:
In [32]:
SQL_QUERY = '''
SELECT co.Name 'country name', ci.Name 'city name'
FROM country co, city ci
WHERE co.Code = ci.CountryCode
;
'''
pd.read_sql(SQL_QUERY, db).head()
Out[32]:
In [33]:
# 위에랑 똑같지만 DB에 부담을 덜주면서 연산이 가능하다
SQL_QUERY = '''
SELECT co.Name 'country name', ci.Name 'city name'
FROM country co
JOIN city ci
ON co.Code = ci.CountryCode
;
'''
pd.read_sql(SQL_QUERY, db).head()
Out[33]:
In [34]:
import os
In [40]:
# file 가져오기
[
file_name
for file_name
in os.listdir("../")
if file_name.endswith(".ipynb")
]
Out[40]:
In [42]:
os.path.join("baseball_players_salary_pred", "baseball.csv")
Out[42]:
In [41]:
# os.curdir 현재
# os.path.join
# os.listdir
Out[41]:
In [ ]:
In [ ]: