In [6]:
from sklearn.datasets import load_diabetes
import numpy as np
import pandas as pd
In [7]:
diabetes = load_diabetes()
dfX_diabetes = pd.DataFrame(diabetes.data, columns=["X%d" % (i+1) for i in range(np.shape(diabetes.data)[1])])
dfy_diabetes = pd.DataFrame(diabetes.target, columns=["target"])
df_diabetes0 = pd.concat([dfX_diabetes, dfy_diabetes], axis=1)
df_diabetes0.tail()
Out[7]:
In [9]:
from sklearn.linear_model import LinearRegression
model_diabetes = LinearRegression().fit(diabetes.data, diabetes.target)
print(model_diabetes.coef_)
In [13]:
import matplotlib.pyplot as plt
predictions = model_diabetes.predict(diabetes.data)
plt.scatter(diabetes.target, predictions)
plt.show()
In [6]:
def preprocess(phonenumber):
phonenumber_process_dict = {
"공": 0,
"영": 0,
"일": 1,
"이": 2,
"삼": 3,
"사": 4,
"오": 5,
"육": 6,
"칠": 7,
"팔": 8,
"구": 9,
"-" : "",
" " : "",
}
for key, value in phonenumber_process_dict.items():
phonenumber = phonenumber.replace(key, str(value))
return phonenumber
preprocess("공일공2220-57삼육")
Out[6]:
In [35]:
class Student():
def __init__(self, name, age):
self.name = name
self.age = age
print("student {name}({age}) is born".format(name = self.name, age = self.age))
def introduce():
print("hi , i am {name} i am {age} years old.".format(name = self.name,age = self.age,))
In [25]:
a = Student()
a.name = "jy"
a.age = 26
In [38]:
a = Student("jy", 26)
In [41]:
a.introduce
Out[41]: